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PREFACE.

N the study of Analytic Geometry, as of almost anything
else, either or both of two ends may be had in view:
gain of knowledge, culture of mind. While the first is in
itself worthy enough, and for mathematical devotees all suffi-
cient, it is certainly of only secondary importance to the
mass of college students. For these the subject can be
wisely prescribed in a curriculum only in case the mental
drill it affords be very high in order of excellence.

The worth of mere calculation as an exercise of reason
can hardly be considerable, for reason is exercised only in
a tread-mill fashion. Even the solution of problems by al-
gebraic processes is a very inferior discipline of reason, for
only in forming the analytic statement does the reasoning
rise clearly into consciousness; the operations that follow
conduct one to the conclusion, but— with his eyes shut. In
this respect Geometry is certainly a Dbetter discipline than
Algebra, and the Euclidean than the Cartesian Geometry.
But not in any kind of reasoning is the very best discipline
found. No argument presents difficulty or calls for much
mental effort to follow it, when once its terms are clearly
understood ; for no such argument can be harder to under-
stand than the general syllogism of which it is a special
case, and that is of well-known simplicity. The real diffi-
culty lies in forming clear notions of things; in doing this
all the higher faculties are brought into play. It is this
formation of concepts, too, that is the really important part
of mental training. He who forms them clearly and accu-
rately may be safely trusted to put them together correctly.
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Logical blunders are comparatively, rare. Nearly every
seeming mistake in reasoning is really a mistake in concep-
tion. If this be false, that will be inwvalid.

It is considerations like the above that have guided the
composition of this book. Concepts have been introduced
in abundance, and the proofs made to hinge directly upon
them. Treated in this way, the subject seems adapted as
hardly any other to develop the power of thought.

The correlation of algebraic and geometric facts has been
kept clearly and steadily in view. While cach may be taken
as pictures of the other, the former have generally been
treated as originals, lending themselves much more readily
to classification.

Only natuaral logical order has been aimed at in the devel-
opment of the subject; no attempt has been made to keep
up the distinctions of ancient and modern, analytic and
synthetic.

With every step forward in Geometiry the difficulty and
tedium of graphical representation increases, while more and
more the reasoning turns upon the jform of the algebraic
expressions. Accordingly, pains bave been taken to make
the notation throughout consistent and suggestive, and Deter-
minants have been used freely.

By all this effort to make the book an instrument of
culture, its worth as a repertory of mathematical facts has
scarcely suffered; in this regard, as in others, comparison
with other texts is invited.

AUTHOR.
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INTRODUCTION.

DETERMINANTS.

Permutations.

1. Two things, as @ and b, may be arranged straight, in the
order of before and after, in but twwo ways: a b, b a. A third
thing, as ¢, may be introduced into each of these arrangements
in three ways : just before cach or after all. Like may be said
of any arrangement of n things: an (n 4 1)th thing may be
introduced in n+1 ways, namely, before each or after all.
Hence the number of arrangements of n + 1 things is n 4 1 times
the number of arrangements of n things. Or

Poa=rI,-n41.
Writing n ! for the product of the natural numbers up to n,
we have

n41l!l=n!n+1.
Hence, if P.=n!l, P,,=n+1l, andsoon.
Now Pyt 2o .2 =911

hence, P;=1.2-3=3!, and P,=n!

The various arrangements of things in the order of before
and after are called straight Permutations or simply Permuta-
tions of the things. The number of permutations of n things is
n! (read fuactorial n or n factorial).

If the things be arranged not straight but around, in a ring,
we may suppose them strung on a string; if there are n of
them, there are also n spaces between them. We may suppose
the string cut at any one of the n spaces and then stretched
straight ; this will turn the circular permutation into a straight
one; and since we may make n different cuts, each yielding a
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distinct straight permutation, the number of straight permuta-
tions of n things is 7 times the number of circular ones. Or

P.=Cn; .0, =n—1!

2. The things, whatever they be, are most conveniently
marked or named by letters or numbers. Of letters the alpha-
betic order is the natural order ; of numbers the order of size is
the natural order; as: a, b, ¢, «-- 25 1, 2, 3, 4, +-- n.

If any change be made in either of these orders, say in the
last, then some less number must appear after some greater,
some greater before some less. Every such change from the
natural order is called an Inversion. The number of inversions
in any permutation is found by counting the number of numbers
less than a number and placed after it, and taking the sum of
the numbers so counted.

A permutation is named even or odd, according as the number
of inversions in it is even or odd. Thus 253 16 4 is an even
permutation containing 6 inversions; 3 1 2 5 4 6 is an odd
permutation containing 3 inversions. The natural order,

1, 2, 3, --- m, contains 0 inversions and i3 even; the counter

order, n --- 3, 2. 1 cont:;insl+2+3+,__+n_l or |

inversions and is eren when the remainder on division of n by 4
is 0 or 1, odd when the remainder is 2 or 3.

It is plain that in any permutation any thing, syvmbol, or ele-
ment may be brought to any place or next to any other one by
exchanging it in turn with each of the ones between it and that
other one. Thus, in 3 745 1 6 2, 7 may be brought next to 6
by exchanging it in turn with 4, 5, 1. Hence any permutation
may be produced from any other by exchanges of adjucents.

3. By an exchange of any two adjacents, as p,q, the rela-
tions of each to all the others, and the relations of all the others
among themselves, are not changed ; only the relation of those
two is changed. Now if pg be an inversion, ¢p is not; and if
pq be not an inversion, ¢p is one; hence in either case, by this
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exchange of two adjacents, the number of inversions is changed
by 1; hence the permutation chonges from even to odd or from
odd to even.

If p and ¢ be non-adjacent, and there be & elements between
them, then p is brought next to g by k¥ exchanges in turn with
adjacents, and then ¢ is brought to p’s former place by k+1
exchanges with adjacents : 3, is carried over %k elements and ¢
over k& + 1 ; thus p and ¢ are made to exchange places by 2k + 1
exchanges of adjacents. The permutation meanwhile changes,
from even to odd or from odd to even, 2k + 1 times ; and an
odd number of changes back and forth leaves it changed. Hence,
an exchange of any two elements in a permutation changes the
permutation from even to odd or from odd to even.

Plainly all the permutations may be parted into pairs, the mem-
bers of each pair being alike except as to p and ¢, which are
exchanged in each pair; hence. one permutation of each pair
will be even, and one odd; hence, of all the permutations, Aalf
are even, half odd.

Determinants.

4. It is plain that »n® things may be parted into n classes of n
each. We may mark these classes by letters: a, D, ¢, --- n, where
it is understood that »n is the nth letter ; the rank of each in its
class may be denoted by a subsecript; thus p, will be the %th
member of class p. Clearly all members of rank % will also
form a class of » members. The whole number may be thought
arranged in a square of n rows and n columns, as in the special

case n = 9, thus:
iy 1‘!1‘1 L dl €y
Cla EJE Ca fl?g €5
ay by ¢ dy ey
iy I!J_‘ 7y (I.‘ 4
| a5 bﬁ s dﬁ e

This arrangement is not at all necessary to our reasoning, but
is quite convenient.
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Suppose we pick out of these »* things n of them, taking one
of each class and one of cach rank (clearly, then, we take only
one of eaclk). 'This we may do in n! ways; for we may write
off the n letters in natural order, a, b, ¢, --- », and then suffix
the subscripts in as many ways as we can permute them, i.e.,
in n ! ways.

Now suppose these »* things symbolized by letters to be mag-
nitudes or numbers, and form the continued product of each set
of n picked out as above: write off the sum of these produects,

giving each the sizn 4 or — according as the permutation of
the subscripts be even or odd: the result is called the Deter-

minant of the magnitudes so classified. Accordingly a Deter-
minant may be defined as

A sum of products of »? symbols assorted into n classes of
n ranks each, formed of factors taken one from each class and
each rank, each product marked 4 or — according as the order of
ranks (or classes) is an even or an odd permutation, the order
of classes (or ranks) being natural.

The symbols are called elements of the Determinant; each
product, a ferm ; the number of the degree of the Determinant is
the number of fuctors in each product. The classes may he
denoted by letters and the ranks by subscripts, or wice versa.
The definition shows that classes and ranks stand on exactly
like footing ; in any reasoning they may be exchanged.

5. There are several ways of writing Determinants. In the
square way, exemplified in Art. 4, the classes are written in
columns and the ranks in rows, or vice versa. Hence rows and
columns are always interchangeable. This is a very vivid way
of writing them, but is fedious. It is shorter to write simply
the diagonal term, thus: |

Zxabycyeen,

The sign of summation = refers to the different terms got by
permuting the subscripts,— there are n! of them; the double
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sign + means that each term is to be taken 4 or — according
as the permutation of the subscripts is even or odd.

Still another way is to write the diagonal between bars :

1“-1&21':3”"?3“'.

This is very convenient when there can be no doubt as to
what are the elements not written: otherwise, the square formn
is best.

6. To exchange two rows in the square form would clearly
be the same as to exchange in every term the indices or sub-
scripts that mark those rows; but by Art. 3 this would change
each permutation of the subscripts from even to odd or from
odd to even; and this, by the definition, would change the sign
of each term, and hence of the whole Determinant. Moreover,
since rows and columns stand on like footing, the same holds
of exchanging two columns : hence,

To exchange two columns (or rows) changes the sign of the
Determinant.

If the two rows (or columns) cxchanged be identical or con-
gruent, i.e., if the elements corresponding in position in the
two be equal each to each, clearly exchanging them can have
no effect on the value of the Determinant, although it changes
the sign ; now the only number whose value is not changed by
changing its sign is 0 : hence,

The value of a Determinant with two congruent rows (or col-
umns) s 0.

Every term of a Determinant contains one and only one
clement out of each row and column; hence a common factor
in every element of a row (or column) must appear as a factor
of every term of the Determinant and hence of the Determinant
itself ; hence, we may divide cach element of the row (or col-
umn) by it, if at the same time we multiply the whole Determi-
nant by it; i.c., any factor of every element of @ row (or col-
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umn) of a Determinant may be set out aside as a factor of the
whole Determinant.

It is equally plain that any factor may be introduced into each
element of a row (or column), if at the same time the whole
Determinant he divided by that factor.

7. If we will find «ll the terms that contain any one element of
the Determinant, say «;, we may supposc all the other elements
in its column and row to be 0; this will make vanish no term
containing «a, and all terms not containing «,. The Determi-
nant, say of 5th degree, will then be

¢, 0 0 0 O
0 b, c d, e
0 b, ¢, d; e,
0 b, e, d, e,
V0 b o5 d; e

Setting aside «, as the first factor in each product, we find all
the part-products by holding the order bede fast and permuting
the subscripts , 5, ;; but this is the way we form the Deter-
minant [by,¢;d,e;!; also the sign of each whole product, after
multiplying by @,, will be the same as the sign of the corre-
sponding part-product, since 1 being in its natural place, the
only possible inversion will be in the subscripts 5545 IHence,
the sum of the part-products or multipliers of a, is the Deter-
minant |b,e;d,e; . Tt is called the eo-factor (or sub-determinant,
or minor) of «, and is the Determinant left after destroying the
row and column of «,.

If now we will find the co-factor of p,, i.c., of the clement in
the pth column and Ath row, we may bring its row to the first
place by exchanging its row in turn with each row before it, and
its column in turn with each column before it. DBy these
» + %k — 2 exchanges the positions of the other rows and col-
umns as to each other are not changed at all ; they stand exactly
as if the pth column and kth row had been destroyed. The new
Determinant got by these exchanges will be the old one ferm
Jor term with like or unlike sign according as p+ %k — 2 (the
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number of changes of sign) is even or odd, or, what amounts
to the same, according as p +k is even or odd, hence the co-
factor of p, in the new Determinant will be the co-factor of p,
in the old with like or unlike sign according as p 4+ k is even or
odd. DBut p,is in the first column and first row of the new
Determinant, hence, by the foregoing. its co-factor is got by
destroying its column and row, i.e., by destroying the pth col-
umn and kth row of the old Determinant ; hence the co-factor of
p, in the old Determinant is the Determinant left on destroying
the row and column of p,, but taken + or — according as p + k
is even or odd.

The co-factor of any element may be denoted by the same
symbol written large ; thus, the co-factor of p, is .

8. DBy definition, all the terms containing any element are got
by multiplying that clement by its co-factor; if, then, we mul-
tiply each element of a row (or column) by its co-factor and
form the sum, we shall get all the terms of the Determinant that
contain any element of that row (or column) ; but every term
contains one clement of that row (or eolumn) ; hence we get
all terms of the Determinant; and since no ferm contains fwo
clements of that row (or column), we get each term but once.
Hence, the sum of products of each element of @ row (or column)
by its own co-factor is the Determinant itself ;

| @1 0yC3-+n,, | = . A; + 0, By + €, Cy + -+ 40, 2V, = ete.

It is to note that the co-factors subscribed , contain every
other subscript in their values dut 1, and everv other letter but
their own. Now change the subscript , to , on both sides of the
equation ; there results

| tabaes ey, | =y Ay + by By + ¢, C) 4 -+ 4 0y N,

The subscripts of the co-factors are not changed, because the
subsecript ; does not appear in their values.

Now the left side of this equation is a Determinaut with two
rows congruent, namely, the 1st and 2d, since the subscripts of
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the 1st, which were all ; were changed to ,, the subscripts of the
2d ; henece its value is 0 by Art. 6; i.e.,

ffﬁ.-.’il -+ bgBl - 1:'201 + e 4= ﬂ?-Nl ={.

The small letters are the elements of the 2d row, the large
letters are the co-factors of the corresponding elements of the
1st row ; plainly the reasoning about columns or about any
other pair of subscripts would be the same ; hence the sum ¢ f
products of each element of @ row (or column) by the co-fuctor
of the corresponding element of any other row (or column) is 0.

9. If the elements of any row (or column), as the 1lst, be
regarded each as the sum of two parf-elements, so that

I i I rr o r 1)
=+ ", b=b'+b"y ey ny=n4+n",
then we shall have

|ty bocgeeem, |=3a," A+ U, By + -+ 4+ 1" N} |
+3a)" A+ 0" B+ .- 4+ 0" N}

The first bracket is clearly the Determinant | @,'bye;--- 2, |, the
second is | ¢, baey ---m, |; hence, it is plain that

(e ay")bsey oo, | =] @y Dyeg ooy |4 | @) Dacy e omy |

In this way one Determinant may always be expressed as the
sum of two part-Determinants which have all their rows (or
columns) the same as in the whole Determinant, but one pair
of corresponding ones, while the sum of any two corresponding
elements in this pair equals the corresponding element in the
corresponding row (or column) in the whole Determinant.

It is now clear that any Determinant may be broken up into
3, or, indeed, into any number of part-Determinants, each cle-
ment of a row being supposed made up of 3, or any number of
parts, thus :

ao=da'+a,"+«"". '+ 4"+, ete.
If every row (or column) be broken up into parts this way,
a part-Determinant may be formed by taking for a 1st eolumn
any part-column of the Ist colummn, for a 2d column any part-
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column of the 2d column, and so on throughout. Hence th:
total nuwmber of part-Determinants will be the product of the
nrumbers of part-columns for all the columns.

Evaluation of Determinants.

10. In the Determinant | a;b,¢5---n,| add the 2d column to
the 1st, cach element to its correspondent ; we get

i (ﬂ-l + bt)bﬁfﬂ"' n, | = | L5 F)gﬂ;}"" ﬂ'nl + [blbgcﬂ"' ﬂ-nl .

The 2d Determinant on the right has two identical columns
of &’s, hence its value is 0; the 1st on the right is the original
onc ; hence the new Determinant on the left equals the old one.
If instead of adding the 2d column we had added its m-fold, we
should have got n times the 2d Determinant on the right, which
would still be 0; plainly, too, the reasoning about any other
pair of columns or about rows would be the same. Hence,
the value of @ Determinant is not changed by adding to each of
its elements in one row(or column) any fixed multiple of the cor-
respondent elements in any other row (or column).

This theorem furnishes a ready method of reducing the degree
of & Determinant. For by proper additions all the elements of
a row (or column), say the 1st, may be made 0 but one; then
the whole Determinant will be equal to this one multiplied by
its co-factor, for we shall have

| cyboeyesong =y Ay +0- B+ 0.+ +-- + 0.V,

=ty |byege-emy, |

The degree of this co-factor is clearly one less than the degree
of the original Determinant; by repeating this process the
degrec of the Determinant may be brought down to 2 or even
to 1.

Thus far the reasoning has been so closely connected and
withal so simple that it has been deemed best not to interrupt
it in any way. The following examples will amply illustrate
the foregoing.
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1. 4631527. In this permutation the inversions are: 43,
41, 42, 63, 61, 65, 62, 31, 32, 52, ten in number, the permu-
tation is even. bcaefgd. Here the inversions are: ba, ca,
ed, fd, gd, five in number, the permutation is odd. On exchang-
ing 6 and 2, the number of inversions falls to five, the permu-
tation becomes odd; on exchanging a and f, the number of
inversions rises to eight, the permutation becomes even.

2. The permutations of 123 are, in pairs: 123, 132; 213,
312; 231, 321 ; one of each pair is even, one odd. Which?

3. The Determinant of 2d degree 'a, b, |=a,b, — a,b,.

a; b,
4. |y b ¢ |[=ay bz — a1bs0 + Ay bze) — agbycy + azhyc,
az b, ¢ —ayb, ¢
ag by c3

The number of terms is 3! = 6, so we write off the combina-
tion a b ¢ six times and suffix the subscripts permuted. The
numbers of inversions in the permutations are resp.: 0, 1, 2,
1, 2, 3, and the signs are prefixed accordingly. A simple
mechanical rule for calculating the Determinant of 3d degree as
shown in this diagram:

The arrows turning up are drawn through the 4 combina-
tions ; those turning down, through the — ones. But this does

not hold for higher degrees.

5 lay bye di|=uy Dby, fzz!—bllﬂﬂ Ca d:!i"'cl ay by dy
as by € .| by oy g g € s a, by dy
g by €3 dy by ¢4 fy ay ¢4 d, | ay by dy
g by ¢y dy —di|a, b, e
ay by c3
ay by ¢4




10.

11.

12.

Also

o ey =|a by |+ Doy
ﬂ-g-l—ﬂg bg ﬂzl oLy bg Cy :[-'.g bg Ca
as+ag by ¢y | ag by es| |ag by

LY +mbl bt 1 = iy bl Cq + mbl E"I L}
o+ mbs by €y t, by Cq mby by €y
| g + mby by ¢4 g by ¢4 mby by €

b T e
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ata +B e+
ag+a; b4 B2 C+ e
az+ag by4+B; c+ys

=|a,bacs| + | boys |+ | Becs| + | 1 Boys| + | arbacs]
+ | ﬂlbﬂ?al + |ﬂlﬁnﬂat ¢ Iﬂlﬁﬂ?a l

=| @, bycs| +m | bybyy| = |y byc5].

by by ¢ |= by byeg — bibyey + bybye;—Dabycy+ b3byco—bsbac
by by ¢ |=0.
by by 3
& € by |=a-,r:._,bﬂ—¢'r1c3b2+a?c3bl—azc,ba+aaclbg
as ¢ by — Gy Cyh,
az ¢ by
=—|a, b ¢l.

ay bs €y

ay by ¢4
[4 5|=82—-30=21|2 5 =2(16—15)=2‘4 5
i 58] 3 4

=2(16 — 15) = 2.

5 2(=96 412+ 100 — 32 — 40 — 90 = 46.
8 10
1 3
4 5 2(=2(2 5 2[=2[0 3_4;=2|3-—4t
6 8 10 3 810 0 5 1‘ 5 1|
2 1 3 1 1 3 1 1 3
= 2(8 4 20) =46
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13. 12 8 5 7= —-1—-1 8 2=—-1-1 3 2
54 2 6 ' 5 42 6/ | 0—-11716
T238i§?238!||ﬁ——52422!
3 4 2 5] | 3 4 2 5{ | 0 11111]

=] 1 17 lﬁim:l 17 161=12 77|=—28.
5 24 22| |0 79 77| |1 27
—1 11 11 0 28 27‘
14. Reckon [k . g!, and find the co-factors K, H, G, F, C, J.
h jfrl
g fe
15. Reckon |5 3 21,3 —2  5(I18 38 —2l/a b ¢]
F4 78 (6 4 =315 -7 6| becoa
1926 (2 -7 6|4 9 —5|jcabd
16. Bring the equation > Y 1=
NPt N Y
r—"Ta rn—"rr
Tollg — Tada  Tolfa — Tl

into the form |7 7, r3ix— |7 v ®Biy+In 7 3| =0.
% Y2 Ys| 2 X3 Xy | Mo Ys Ys
111 {11 1] [z

Multiplication of Determinants.

11. An interesting case of Art. 9, as illustrated in Example
7, is this:
a1a:+b1ﬂ1+€1']’|+"'+ﬂ1 ¥ia alﬂz+b1-ﬂg+"'+ﬂ: LTI ﬂn'uL"’*l Bn+“'+ﬂ'1 V|

ayaytby Bytca vyt tng vy, ayagtby Bytetngvy, o vy @Ggontby Byt et n, vy, |

AnaiFbnBiteary+ vy, uaytbuBytednigyy, oo oo vty GuomtbaButertngvy |

We notice here that the Greek and the Roman letters enter
this Determinant in the same way : the Greek appear in the
columns as the Roman do in the rows, and vice versa. Again,
this whole Determinant, which we may write AGRE, clearly
breaks up into the sum of n* part-Determinants; for any of
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the 1st n part-columns may be combined with any one of the 2d
n part-columns, and so on. But all but # ! of these part-Determi-
nants vunish ; for, if the Roman letter of one part-column be
the same as the Roman letter of any other, then on setting out
the Greek factor the part-determinant will have two columns
identical, and vanishes by Art. 6. Accordingly, to get part-
Determinants not = 0, we must pick out each time all the Roman
letters for our part-Determinant, one for each part-column :
hence, on setting out the Greek factors, the part-columns
become the columns of the Determinant of Roman letters.
| aybycg ...y, |, which we may write AR ; henee, our part-Determi-
nant contains as a factor a determinant that can differ from
AIZ only in the order of its columns, i.e., only in sign; hence,
being a factor of each part-Determinant, AR is a factor of the
whole Determinant. Henee, since the Greek and the Roman
letters enter AG'R alike, AG is also a factor of AGRE. Now
the terms of the product AG - AR are of 2nth degree, and so are
the terms of A/ ; also the number of terms both in AR and
in AG-AR is the same, n! n! Henece, AGR can differ from
AG - AR, if at all, only in sign; i.e., AGR= +AG-.-AR.
To decide as to the sign, consider the product of the diagonal
terms; it is 4+ in AG - AR; the like term is also 4 in AR
For it is got by taking the 1st part-column of the 1st column,
the 2d of the 2d, etc. : the factors set out are a;3svy5...1,, and
the order of the columns of Roman letters is natural, as in AR ;
and in AR the diagonal a,b.¢; ... n, is 4, as is the diagonal term
in every Determinant. Now one pair of corresponding terms
being like-signed in AG - AR and AGR, all are like-signed;
i.e., AG.-AR=AGR.
ILLUSTRATION :

@+ b B4y a+b B4y oy 0B+ iy

zoy + D31+ a1y Qaag4- D3P+ Covyny  Gaag+ Do f3s + 2y

tgay + 0381+ Cayry  Ugag Dy Ba+ €590y a4 03By + 3y

= ayBays | W Doy |+ aryeBs | by |+ Bryeas | bicaay |
+ Bragys | biases | +y1ae 85 | ¢ by |4 9 Baag | ey byt |
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Here the inversions in the order of the columns of Roman letters
are those got by permuting those letters; if we restore them to
natural order, the indices, which are now in natural order, will
be permuted as were the letters; also, restoring them will
change or not change the sign of the term according as the
number of inversions is even or odd; but the inversions in
the order of Roman letters are the same as in the order of the
Greek ; hence, the Greek products are 4 or — according as the
permutations of the letters are even or odd; hence, the sum
of the Greek products is the Determinant of the Greek letters.
As no reference has been made to the number of letters, 3, this
proof is quite as general as the one already given. Actually
bringing the Roman letters into natural order, we get

AGR =a;B:7:AR — 0, B57: AR + 03 3, 7: AR — ay 3,7, AR
+ @B AR — 38,1, AR =AG-AR.

12. If y=4d,, a,=4,, ..., =B, ..., the Greek letters
being the co-factors of the corresponding Roman letters, then,
in AGR all the elements vanish but the diagonal ones, by
Art. 8, and these are each AE; hence AGR has but one term,
the diagonal term, and that is AR". Writing A for AR and A
for AG, and remembering AGR=AG- AR, we have

A-A=A" or ﬁ:ﬁ""l;

the Determinant of the co-factors of the elements of a Determi-
nant of nth degree is the (n — 1)th power of this Determiaant.

In particular, if n =3, A=A%
If the co-factor of A, be a;’, and so on, and if the Determinant
of the co-factors a,', ete., of the co-factors A,, ete., be written

A', then
ﬂrr_ &n 1 —_ (ﬁn—!}n-l= &n’—ﬂn-i-l‘

Now if we multiply ay, by, ..., @3 ..., each element of A by
A*2or A: A, it will be the same as to multiply A by A»-?n,
since it multiplies each row (or column) by A" ?; the resulting
Determinant is then A*-2+! or is A'. Hence, we may con-
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clude that a' = a-A" %, a proposition we have not space to prove

more rigorously.
In particular, if n=3, o' =a-A.

Applications.

13. If there be given a system of n Equations containing
n Unknowns in first degree only, it is possible by successive
elimination to get one Equation with one Unknown, whence this
Unknown may be found ; then, by substitution, all the others
may be found, one by one. DBut this process is very tedious.
The theorems of Art. 8 furnish a direct solution of the problem.

Call the Unknowns u;, s, -+, %, ; then
ﬂlﬂl‘-}"blﬂg‘l" """"" +'ﬂ1ﬂ“=kl
a-gul-l-bgug-{-'“ e "'+ﬂﬁﬂn:;l'2

-

aty + Dptg 4 oo een i, =k,

If the Equations be multiplied by 4,, A,, --- 4,, in turn and
summed, where 4,, 4,, ---, A4, are the co-factors of a,, a,, -+ a,,

in the determinant of the coeflicients |a;b,¢;-++ 0, |, the coeffi-
cient of %, in the sum will be

ay Ay +a Ay + - +a,4,, =|ayb,c;---n, |, by Art. 8,
while the coeflicient of any other u, as u,, will be

hd +b A+ +b,4,, =0, by Art. 8,
and the absolute term in the sum will he

kA, 4+ ko Ay - + K, d, = | Fybyegeom, |3
or, | aybyegeeemy, |uy =| kybeeg oo m, |,

|Ellb;;{.'a—-- 'n-nl

Note that the denominator is the Determinant of the coeffi-
cients in order; the numerator is got from the denominator by
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replacing the column of coefficients of the Unknown in question
by the column of ahsolutes.
Plainly the reasoning holds alike for all the Unknowns.

14. If the absolutes, the A’s, be all 0, then the numerator of
the value of each Unknown. of each #. has a column of s,
hence itself is 0; hence the value of each » must he 0 unless
the denominator also be 0 ; when the &'s are 0, the Equations are
homogeneous in the u’s ; hence

The condition that n homogenenus equations of 1st degree in n
Unknowns may consist, is that the Determinant of the coefficients
of the Unknowns vanish.

Where the Equations are homogeneous in the u’s, each may
be divided by one of the u's, say u,; the quotients of the u’s
being considered as new Unknowns, new u’s. there are n Kqua-
tions and only (»n — 1) Unknowns, while the coefficients of u,
are absolutes ; the condition of consistence of the Equations is
unchanged ; hence

The condition that n Equations among (n — 1) Unknowns in
18t degree may consist, is that the Deferminant of the coefficients
and the absolutes vancsh.

15. Often it is required to eliminate one Unknown between
two Equations of higher degree in that Unknown ; or, what is
the same, to find what relation must hold among the coefficients
in the two Equations, if the two are to consist, i.e., hold for the
same values of the Unknown. An example will make this clear.

Given e+t +cx4+d=0 and er*+fr4+g=0:
find the condition that these Equations counsist, i.e., that the
roots of the 2d be also roots of the 1st.

When the first Equation is satisfied, so is this:

at+ b el +de=0;
when the second is, so are these:
e+ ft+gr=0 and er*+frP4g2*=0;
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hence, when hoth are satisfied, so are these five:
0.2 4ar +b24cx +d=0,
a0t e +de +0=0,
0.2+ 024 e + fxr +g=0,
0O-2*4e. 2"+ f +g2 +0=0,
e-2'+f +g2* +0.-240=0.

Here are 5 Equations containing 4 Unknowns: 2#, 2, 2°, x;
by Art. 14 they consist when and only when

f=0.

QA
oo O Ry

(

R oo R O
- DD

L~

Clearly this method is always applicable. Be one Equation
of nth degree, the other of (n 4 d)th degree ; by multiplying the
1st by « d times successively we raise it to the (n 4 d)th degree,
and get in all d 4 2 Equations and » 4+ d Unknowns ; then by
multiplying each of the two Equations of (n + d)th degree by
x we get two more Equations and one more Unknown, the next
higher power of @, "471; by » — 1 such successive multiplica-
tions we get in all 2 + d Equations and 2% 4 d —1 Unknowns;
then Art. 14 is to be applied.

Under the hands of British and Continental masters the
Theory of Determinants has been of late years built up to eolos-
sal size and applied to almost every branch of mathematics; in
fact, it has become well-nigh indispensable to higher research.
An excellent English work is Muir's T'heory of Determinants.

EXERCISES.

1. Solve the systems of equations :
Sr+4y—52=7, 2r—-3y—4:z=9, 4dr—56y+2=8;
r—y+2:45e=10, 2x4+3y—z+4+e¢=T,
4y —3r+4+82—2v=0, 5z2—2y—5x+Tv=3.
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2. Do these systems of equations consist ?
br—3y=7, Br+oy=9, Sr—2y=—4;
2x4+3y—4z=95, dx—2y+32=7, z4+b6y—6z2=-=§,
4r4 3y —3z=2.
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ParT I. THE PLANE.

CHAPTER L

INTRODUCTORY : FIRST NOTIONS.
Function and Argument.

1. In a table of logarithms are found two series of corre-
sponding values : one of natural numbers and one of logarithms.
Given any number, we may find from such table « corresponding
logarithm ; given any logarithm, we may find the corresponding
number. Like may be said of a table of natural sines: given
any number (expressed commonly in degrees), we can find the
corresponding sine; given any sine, we can find @ correspond-
ing number. Such tables are ecalculated to a greater or less
degree of exactness by rules or formule ; other like tables are
found in works on Physics, calculated, however, not by rule,
but by experiment. From such a table we may find (within
certain limits) e.g. the tension of saturated vapor of water for
every degree of temperature, and converscly; but we know no
rule to ealculate one from the other.

Two magnitudes, such that to any value of one corresponds
value of the other, are called functions of each other.

Such are a number and its logarithm ; a number and its sine ;
the surface or volume of a sphere and its radius ; the velocity
of a wave-motion, as of sound, and the elasticity of the medium ;
the density of pure water and its temperature ; ete.



2 CO-ORDINATE GEOMETRY.

2. As is seen, in DPhysics the interdependent magnitudes
called functions in general define physical states, and the nature
of their interdependence cannot generally be stated in a formula
or rule ; in Mathematics the interdependents are empty forms,
symbols : z, ¥, 2, «, b, ¢, and the nature of their interdepend-
ence is expressed by a formula or equation.

Take, for example, the Eq.,* 2x+ 3y =12.

Assigning arbitrary values to x respectively 3, we reckon the
corresponding values of y resp. @ by the formule (rules) :

y=12—2x:3 resp. r=12 —38y: 2.
A series of pairs of corresponding values is

(mvy)=|(_316) ’ (—2513‘5“) ’ ("'11‘1‘34‘) 3 ({],4); (1:-"'3““) 3
(2,8): (3,2); -+ |
In the unsolved Eq., 2x4+3y=12, =z and y stand on

precisely like footing : each is an i¥mplicit function of the other,
but in the Eq. solved as to one of them, say y, thus

y=12—22: 3,

they no longer stand on like footing; contrariwise, this Eq.
oives a rule for reckoning the value of y for any assigned value
of xz, but not conversely. That symbol to which we assign arbi-

trary values is called the Argument; the symbol whose values
are reckoned is called specifically the function; if the Eq. be
solved as to any symbol, that symbol is called an explicit
function.

ILLUSTRATION. 2 4 %°=25: herc # and y are each an implicit
Sunction of the other; solved,

y= +V25 —2°: here y is an explicit function of the argument x.

z= +V25—y*: here zis an explicit function of the argument y.

* Short for Equation.
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N. B. Though the relation between two symbols be accurately
expressed by an Eq., yet it is not in general possible to state a
rule for reckoning one through the other, since the general Eq.
of degree higher than the fifth has not yet been solved. None
the less, the symbol to which we suppose arbitrary values
assigned is still ealled the argument ; that, as to which we sup-
pose the Eq. solved, the function.

3. If in the Eq. connecting two symbols each be operated
upon by a finite number of algebraic operations, additions, mul-
tiplications, involutions, and their inverses, then is each called
an alyehraic funetion of the other: but if the number of such
operations upon cither be infinite, then are they called Zranscen-
dental functions of each other; as

P 2 :1:7 i s
y=sinr=z—— —1 )" =
4 d‘+l}' ?: u§ ( } 3 +1T
y=e=1+a+ + +"’4+---- Z =

More important for us is this distinction: when to one value
of the argument correspond one, two, three, resp. many values
of the function, the latter is called a one-, tiwco-, three-, resp.
many-valued function of the argument ; as

2043y=12: a and y each one-valued functions of
the other ;

=12 z and y each fwo-valued functions of
the other;

' =4px: x a one-valued function of ¥, » a two-

valued function of a;

21
: 4 a one-valued function of a,  an in-

2n! Jinitely many-valued function of y
(since, if x =7 be any root of the Eq. for any assigned value
of y, then is also & =+ 2nzr £ 7 a root, n being any natural
number).

Yy=cosz=3(—1)"
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EXERCISES.
What functions of each other are r and y in
+ “” =1; P—38ary+22=0; (2?4 y%) =4a's?y?

e
_—— @ A 1 '5'
y 2(& + e )

From the last Eq. express x as an explicit function of y.

4. To different values of the argument correspond in general
different values of the funection ; if the difference between two
argument-values be very small, in general the difference be-
tween the corresponding function-values wiil be very small: as
the argument changes gradually, so does the function. DBe
now x; — x; = Az the difference between two argument-values,

— ¥, = Ay the difference between the corresponding function-
ra.lues; if then, by taking Ar <o, we can make Ay< ¢’ for all
values of Ax < o, where the ¢’s mean magnitudes small at will,
then is y called a continuous function of z.

ILLustRaTiONs. 22 +4-3y =12, If (@,%), (€,%:) be two
pairs of corresponding values,

then 224+ 3m=12, and 2z, 43y,=12;
whence x—x=—3(w.—m), or Ay=-— %Az,

The sign — shows that, as either x or ¥ increases, the other
decreases ; but we have here to deal only with the absolute (or
signless) values of the differences Az and Ay, and since their
ratio 2: 3 is finite, clearly we can make and keep either small
at will by making and keeping the other small at will. This is
so for every finite value of = or »; hence, each is a continuous
function of the other for —w <r<w, —w<y<=.

Like may be shown of the functions y = sinx, y = cos z, but
not of their quotient

sln X

y=tanzxr=
cosx
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For m:——-:—;—kh, I very small, sin@=—1 nearly, cosz
is 4+ and = 0 nearly; hence, y = tan x is very great and necg-
ative. As & increases toward 'g, sinx increases toward — 0
(i.e., nears 0 from the — side), cosx increases toward +1,
tan z increases toward — O gradually ; as & nears x, « nears g,
sinz nears +1, cosz nears + 0, tanz becomes 4 and very
great, but changes throughout gradually with z. Forz = ?Er — oy

o small at will and 4, tanx is very great and +; for
m=g+o“, cos = changes from the + to the — side of 0, sin

changes not, tanz changes from being very great and + to

being very great and —. Hence, for -%{m{%, tan z is

—
LLY

a continuous function of x; but for r=3, tan >z is a discon-

tinuous function of z: if :vl-:::g, Ecg::;:, we can not make
Yo — Y1 =tanax, —tan®, = Ay small at will by making x,—x

= Az small at will ; as « passes through the value == g , tanx

springs from 4w to —o . The value =g is called a point
of discontinuity for the function y = tanx. Since = is the period
of the tangent, i.e., tanz=tan(zx ), z2=(x2n4 1)% is

also a point of discontinuity.

EXERCISE.

Show that y=c. ¢ * =15 discontinuous for r=a.

£x o ‘IE' 1
HixT. As z nears @, increasing, y nears —c; as z nears a, decreasing
J nears +e¢; as x passes through e, increasing resp. decreasing, y springs
from —c¢ to +c resp. from +¢ to —c.
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Geometric Representation of Magnitudes.

5. Any measurable magnitude may be represented by a
number, called its metric number : the ratio of the magnitude
to an assumed unit-magnitude ; a number may be represented,
or pictured, by some definite part of a line, some arbitrary tract
(i.e., definite part of a right line) being taken to picture 1.
Thus, if AB picture 1, BD will picture 2, BC will picture /2,

a b

v v

cr ¢
0 A S

B D

BCD will picture =. Instead of the tract whose metric number
is a may be said briefly the tract a. On the ray OD lay off
from O any number of tracts picturing as many (positive)
numbers. To picture the sum of any two numbers, a and b,
lay off a tract s equal to the sum of the tracts @ and d. To
picture the difference of two numbers, « and b, lay off a tract d
such that the sum of the tracts b and d shall equal the tract a.
To do this, lay off from the end A of tract a, toward O, i.e.,
counter to the direction ¢ was laid off in, a tract b to ('; then is
OC the sought tract d. Three cases may arise :

(1) a>b, then the point C fails between O and 4 ;
(2) a =1, thenthe point C' falls on O, the differenced is 0;

(3) a<b”, then the point C" falls beyond O leftward; but
then the difference o —b" or d is negative; hence negative
numbers are pictured by tracts laid off counter to the direction
in which are laid off tracts picturing positive numbers. But in
this way was laid off a positive tract, to subtract it; hence, to
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add a negative tract, subtract an equal positive one ; hence, too,
to subtract a negative tract, add an equal positive one.

N.B. To add to a tract, or to subtract from it, we lay off
from its end : forwards, from it, to add a positive, or subtract
a negative, tract ; backwards on it, to subtract a positive, or add
a negative, tract. Like reasoning and conclusions hold for

angles and arcs.

6. Assuming, then, any RL. (short for right line), we may
picture all real numbers by tracts laid off on it rightward and
leftward from any assumed point O. As all such tracts have

—— -

0 a A

the same beginning, O, each is fully defined by its end. Ac-
cordingly, not only the tract O4 by its length and direction, but
its end, the point ., by its position as to O, pictures the num-
ber a; so, every point on the RL. O pictures some real
number, the RL. itself pictures the whole of real numbers.

If we take two RLs., as OX, OY, intersecting under any X w,
each will picture by its v
points the whole of real
numbers. the section O

naturally taken to pict- 4 - 2

ure zero in each picture. b /

Any point Pin the plane a X
of the RRLs. will picture 4

then not simply one

number but a pair of

numbers, as (a, b) ; for
its distances from the zero-point O, measured along these RLs.,
are a and b.

N.B. The choice of RLs. and of positive and negative direc-
tions is arbitrary ; it is common to treat rightward and upward
as 4, leftward and downward as
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EXERCISES.

In the figure, the corner-points picture the pairs of numbers bracketed
by themn.
1. Find the points that picture these pairs: (1,3), (-3, 1), (—2,1),
{41 S '5;': {U: 3}1 ID, E‘]: ':51 0];
(6,0), (0,0).

2. Where are all points
picturing pairs whose first
term is 0 ; i.e., of the form

/ x o

3. Of the form (a,0)?

4, Where are all pict-

ures of pairs whose terms

#,—-2 are equal ; i.e., of the form
(a,a)?

(—1.-1)

5. Of the form (a,—a)?
6. Where arc all pictures of pairs whose first terms are all alike,
second terms unlike ?

7. Whose second terms are all alike, the first unlike ?

7. Be now f(z, y)=0 (read: the f-function of x and y
equals 0) any Eq. determining # and y as functions of each
other, and suppose the functions continuous and one-valued.
Be (zy, 1), (%2 %) - - - (2,5, ¥,) pairs of corresponding values ;
i.e., be f(z, 1) =0, f(z;y%.)=0.... f(x,,5.)=0. Lach pair is
pictured by a point in tbe plane of OX and OY. Suppose the z’s
subscribed in the order of size, thus: o, <o, <a; <.+ - <z,. By
taking consecutive values of z very close to each other, we make
the consecutive values of ¥ very close to each other; this series
of pairs of values of 2 and y will then be pictured by a series of
points consecutively very close to each other. Now, it is true,
however close together we may heap these points, we can never
make out of them a line. But if the function be continnous, by
taking x,., — , = o we can make 7, ., — 7% = «', and for every
value of x between z, ., and x, the corresponding value of » will
differ from 7, by < o', positively or negatively ; i.e., all points
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picturing pairs of values for x between ., and x, will lie in the
double parallelogram whose sides are ¢ and 2¢'. Hence all
points picturing pairs of values that satisfy the Eq. f(@, ¥) =0
lie in a series of con-

tiguous double parallelo-

grams, whose sides are ﬂ

small at will; so, too, z

are the diagonals of the
single parallelograms. /,

The train of diagonals
(that one of each couple x
being taken that joins '
two picturing points) will
form a polygon (open or closed) whose vertices are picturing
points, and by taking the values of @, and therefore of y, ever
closer and closer together, we make this polygon near as its limit
a definite curve, of which each diagonal 1s o chord. Every pair
of values satisfying the Eq. f(x, y) = 018 pictured by a point
on this curve ; and conversely, every pointof this curve pictures
a pair of values satisfying the Eq. f(2, ) = 0. Hence,

<A geomelric picture of the Eq. f(x,y) =0 is « plane curve.
We say indifferently the Eq. f(x,y) =0 and the curve
J(2 ) =0.

N.B. The curve breaks up in case : of a many-valued function,
into many branches ; of a discontinuous function, into distinct
parts. Dut the reasoning needs but slight change. If some
other than a RL. be used to picture a series of numbers, like
reasoning and conclusions hold.

Y

Determination of Position on a Surface.

8. We say of a surface: it is doubly extended, or has two
dimensions, meaning that two independent measurements are
necessary and sufficient to fix any point on the surface. Thus
we know any place on the earth’s surface, knowing its latitude
and longitude. In this familiar example we suppose the sur-
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face covered with a double system of lines: hallf-meridians and
perpendicular parallel small circles. Through any point of the
surface passcs one and only one half-meridian, one and only
onc parallel ; hence, knowing any point, we know its meridian
and parallel. _Also, any half-meridian cuts any parallel in one
and only one point; hence, knowing any meridian and any par-
allel, we know their junction-point. The parallels are named
from their angular distance from the mid-parallel (equator) ;
the half-meridians from their angular distance from an assumed
fixed half-meridian.

Likewise we may think a plane covered with a double system
of (say parallel right) lines, making any angle » with each
other. Through any point in the plane passes one and only

¥ one line of each system;

/ / hence, knowing any point,

Y=3 P we know what pair of lines

meet in it. Conversely, any

pair of lines mect in one and

only one point of the plane;

hence, knowing any pair of

@ lines, we know their junc-

tion-point. We name and

know each line of a system

by its distance from an

assumed fixed line of the

system (measured on any line of the other system). If this

measurement be rightward or up, the metric number of the

distance 1s marked <+ ; if leftward or down, '—. The

assumed fixed RLs., as OX, OY, are called Co-ordinate Axes,

or axes of X and Y, or X- and Y-axes. The angle v, reck-

oned {rom the 4 X- to the 4 Y-axis, is called the co-ordinate

angle ; for w = 90°, the axes are rectangular ; otherwise, oblique.
The junction-point, O, of the axes is called the Origin.

9. A point is fixed as the junction of a pair of parallels, or
co-ordinate lines; conversely, a pair of co-ordinate lines are
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fixed as meeting in a point. The distance from the origin
0 at which a co-ordinate line cuts the X- resp. Y-axis is
called its intercept on that axis. Such intercepts are denoted
by the symbols & resp. . If a be the metric number of the
x -intercept of any parallel to the Y-axis, then is this par-
allel known complctely from the Eq. a=a, which is there-
fore called its Eq. S0 y=58 is the Eq. of a parallel
to the NX-axis making an intercept b on the Y-axis. The
junction-point of this pair is known completely from the two
Egqs. @=ua,y=>5, which are therefore called the Egs. of
the point. The point itself is spoken of as the point (a, U) or
as I’ (a,)) ; « is called the absecissa or x of the point, b, its ordi-
nate or y; « and b, its co-ordinates or its x and y. We may
now convert the proposition of Art. 6, thus: .dny point in «
nlane may be represented by a pair of numbers: the rectilinear
co-ordinates of the point.

10. We may think the plane covered with some other double
system of lines: as a system of rays from the centre of a sys-
tem of concentric cir-
cles. Each point is
fixed as the junction
of a pair of co-ordi-
nate lines: ray and
circle; cach pair of
such co-ordinate lines
is fixed as having
such a junction-point.
Each ray is known
and named from its
angle with some assumed fixed ray, as OD, called base-line or
polar-axis; angles reckoned clockwise, as @', are marked —,
those reckoned counter-clockwise, as , are marked -+ ; the
direction of a ray which bounds the ray’s angle, as OP, is taken
+ ; the counter-direction, as OP", —. Each cirele is known
and named from the radius p. The angle 6 of a ray and the
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radius p of a circle are called the polar co-ordinates of the
junction-point of ray and circle ; i.e., of the point (p,6). p=r¢
is the Eq. of a circle: it declares that every point of the circle
is distant ¢ from O; 6 =d is the Eq. of a ray: it declares
that the radius vector from O to any point of the ray is sloped
d to the polar axis. Ray and eircle meet in the point whose
Egs. are p=¢, 8=d, i.c., in the point (p, ).

N.B. To fix all points in the plane by rectilinear co-ordinates,
x and , it is necessary to let each range in value from — x to
4+ = ; bat it is sufficient to let p range from 0 to 4 o0 . 6 from
0 to 2x. So confining p and @ we have but one pair of values
to fix any one point; but if we let each range from — o« to 4=,
then any point having co-ordinates (p, #) will also have co-
ordinates (—p, 0+7), (—p, —=+8), (p. —27+86), and in
each of these four pairs we may suppose @ increased or de-
creased by 2n=, n being any natural number. In polar co-
ordinates with this range, to any pair of values corresponds
but one point, but to any point correspond jfour infinities of
pairs of values.

11. By reasoning quite like that of Art. 7 it may now be
shown that the geometric picture of any Eq. between polar

co-ordinates, as b (p, 8) =0, is a plane curve. Every
point of the curve pictures a pair of values of p and 8 satis-
fving the Eq. b (p, 0)=0; conversely, every pair of
values of p and 0 satisfying the Eq. ¢ (p,6)=0 is

pictured by a point of the eurve. We speak indifferently of
the Eq. $(p,0)=0 and of the curve ¢ (p, 0) =0.

12. There are various other kinds of co-ordinates, as bi-
polar, trilinear, homogeneous, elliptic: but rectilinear (called
also Cartesian, from Descartes, the inventor) and polar are
the most common and important.

A point that may be anywhere in a plane and a pair of co-
ordinates that may have any values may he said to have two
degrees of freedom; a point that may be anywhere on some
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curve in a plane and a pair of co-ordinates whose values must
satisfy some Iiq. may be said to have one degree of freedom ;
a point that must have one of several definite positions and a
pair of co-ordinates that must have one of several definite sets
of values may be said to have no degrec of freedom. Thus
it is seen that mobility in the point corresponds to variability
in the pair of values,

]ff

X

It is to be noted that the same pair of values will in general
be pictured by different points, not only in systems of different
co-ordinates, as rectilinear and polar, but also in different
systems of the same co-ordinates. Thus the pair (2, 1) is
pictured by the point 7 in the system OX, OY, but by the point
P in the system O'X', O'Y'. Conversely, in different co-ordi-
nate systems the same point will picture different pairs of
values. See Art. 21.

EXERCISES.

Assume a system of rectangular axes, also take the 4 X-axis as a

polar axis; then,

1. Find the point ( p=2, E:%), and show that its rectangular co-ords.

are (v3,1).
2. Show that the rectang. co-ords. of (p, #) are r =pcosd, y= psiné,
3. Ience, express p and 8 through 2 and .

4, Find the rectang. and polar Eqgs. of the axes and of a cirele about
0, radius 5.
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Summary.

13. The results reached so far may thus be summed :

A. A pair of numbers (as corresponding values of argument
and function) may be pictured geometrically by a point in
a plane.

A'. A point in a plane may be pictured algebraically by a pair
of numbers (the co-ordinates of the point).
The point picturing a number-pair and the number-pair pic-
turing a point will vary with the co-ordinate system chosen.

B. An equation’ (or functional relation) befween two symbols
(as f(x,y) =0, ¢(p, 6), may be pictured geometrically by
a plane curve.

B'. A4 plane curve may be pictured algebraically by an equation
between two symbols (called current co-ordinates of a
point of the curve).

The curve picturing an equation and the equation picturing
a curve will vary with the co-ordinate system chosen.

Strict proof of B’ is neither in place nor needed here; as
occasion may offer it will be verified as we go on.

14. The doctrine based on these facts is named Co-ordinate
(or Analytic, or Algebraic) Geometry of the Plane.

Its problem is twofold :

I. Given any algebraic form (as f(x,%) =0), to picture it by
a geomelric form in @ plane (a plane curve) and to inter-
pret its properties as geometric properties (of the curve).

II. Given any geometric form in a plane (a plane curve), to
picture it by an algebraic form (as f(x,y) =0) and
thence deduce its properties algebraically.

N.B. Not to repel by over-subtlety, by a number has thus
far been meant a (so-called) real number. DBut, as the student
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may know, there are equations whose roots (some or all) are
(so-called) imagmary numbers, i.e., numbers involving the
symbol i or vV —1; as 2°4y*=~—1. This Eq. is satisfied hy
no pair of real values of = and 7 ; hence it cannot be pictured
geometrically in the plane of the axes OX, OY, in which, e.g..
ayf=1 is pictured by a circle about O with radius 1.
since every point of this plane pictures and pictures only a
pair of real values of x and . If, then, 4= —1  can
be pictured geometrieally at all, it must be by some geometric
form nof in the plane of OX, OY. 'The whole question of the
depiction of pairs of imaginary numbers must be reserved.

A real number may be defined as one whose second power is
positive ; an imaginary, as one whose second power is negative ;
a complex number, as made up of a real and an imaginary

part.
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CHAPTER IIL
THE RIGHT LINE.

Before attacking the problem proper of Co-ordinate Geome-
try it may be well to establish certain useful elementary

relations.

/ Py (2 )
I=i

Y=1mn

15. Distance between two points in terms of their rectilinear
co-ordinates. ILet the points P, P, picture the pairs written

beside them. Then, at once,
B=ts— ) +Ys—h — 2% — %3 Yo — Y- cos(r — w),

or, i
N.B. We may as well write x, — z, and y, — y,.

o 2 —
Ty— &y +Yo— Y + 2% — Xy Yo — Y, - COS w.

I

CoroLLARY 1. For @ =90°, cosw=10;

CoB=r— e —y 5 e,
The syuared distunce between two points equals the sum of the
squared rectangular co-ordinate differences of the points.
Cor. 2. If one of the points, as P, be the origin, then

=0, n=0; . .d=x'+y"+2xy,co8v; i.e.,
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The squared distance of a point from the origin equals the sum
of its squared rectilinear co-ordinate differences plus twice their
product by the cosine of the co-ordinate angle.*

N.B. It will be convenient to use certain self-explaining
symbols and abbreviations: as, L for perpendicular; A for
triangle ; X for angle; L for right angle; |l for parallel; Eq.
for equation ; Cd. for co-ordinate ; RL. for right line; P (=, y)
or simply 7, or simply (2, ) for the point whose co-ordinates
are @ and y; £, or (2, ) for the point whose co-ordinates are
z; and 7,3 and so for other subscripts, the wuniform wuse of

—i
the subscript being to limit a general symbol; also P, P, or

— i
(@15 o) (25 y2) for the tract from P (x), v,) to Py (2, ¥2)-

EXERCISES.

1. If (p;,0,), (py 6,) be two points, 3 their distance apart, show that
8 =p’+ p,S —2py p, cO8 6, — 0,

2. The vertices of a & are (2,4), (—2,7), (—6,—8); draw it, and find
lengths of its sides, for @ = 00°, and for o= 607.

3. Draw the 4side (quadrilateral) whose vertices are (7,2), (0,9),
(—3,—1), (—6,4), and find lengths of sides and diagonals, for w= 00°,
and w=45°.

4. Find length of tract between (17, 30° 117) and (19, 48° 2¢°).

5. Find points on Y-axis distant d from (x,, »,), for o = 00°,

Say (by an Eq.) that (z,, »,) is distant 11 from (7, —2); w =60°,

Say that (x, y) is equidistant from (2, 5) and (—=11,1) ; w=45°.

Find (x, y) equidistant from (2, —~13), (=9, 5), (17,23}, w=90°.
—— =

The tract (5, — 3)(22, y) is V314 long ; find y, for w = 90°,

10. When is (4,5) equidistant from (—3, 1) and (9, —2)?

£ .o m

16. If the Cds. (2f, y') satisfv an Eq. f (z,%)=0, then is
the point (2',%') on the curve /i (x,%)=0; if the same pair
satisfy a second Eq. fi(x,y)= 0, then the same point (', ")
is on a second curve f. (2. y)=0; conversely, if (2',y') be a
common, or junction, point of two curves: f(x,%)=0,
Jo(x,¥)=0, then the pair (a',%') satisfies both Egs., i.e.,
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L@ y")=0 and f:(2',y)=0. Hence, to find the Cds. of
the junction-poins of two curves, solve their Egs. as simultaneous.
From Algebra we 'know that the solution of two simultaneous
Egs., one of pth and one of gth degree, involves in general the
solution of one Eq. of pgth degree ; such an Eq. has pg roots;
therefore, there will be in general pg pairs of values of x and y
satisfying both Eqs.; i.c., two curves, one of pth and one of
qth degree, meet in pg points. Two, three, or many pairs of
values may be equal, in which case there is a double, triple, or
multiple common point; two or 2 pairs may be imaginary,
where two or 2n common points are imaginary, not in our
plane of OX, OY.

ILLesTraTiONs. 1. 32— Ty =55 and 52+ 2y =— 4 meet in
(21_-)*

2. 4+ (G—y)(d—32x—y)=0 and x4 y= "7 meet in (4.3)
and (—2,9). ¢

3. 92°4+10xy + = 273 meets 92°— 10ay + *= 33 in
(1,12), (—1,—12), (4,8), (—4,—8).

4. y =4z, =4y ; hence, y¥' — 64y =0;
or y(y—4)(F+4y+16)=0; common are (0.0), (4,4),
(—2—i2v38, —24+i2V3), (—24+i2V38, —2—i2 /3).

The last two pairs cannot be pictured by points in our plane ;
in what sense they are section-points of the two curves in our
plane cannot now be made clear.

On review let the student construct the above curves.

17. Cds. of the point that divides a tract P, P, in a given
mﬁﬂ F’l: 'U.g-
If P(x,y) be the point, so that
PyP:PPy=p: p,
then, by similar &, z— o0, — o= 1 53

o xﬁ_;."-lﬂfe-l‘ Py
: 1t e
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1l =+ Py

prtpe
If cither term of the ratio, as u,, be negative, then is ' P, to
reckon counter to P' Py ; i.e., P' falls without the tract, next to
P,.  The division is then called outer. Conversely, if the
division be outer, one term of the ratio, and hence the ratio
itself, is negative.

The formulwe yield only one pair of values of = and y;
hence, only onc point divides a tract in a given ratio.

Notice the order of the subseripts.

likewise, ¥ =

V=3

P
L= o o
/ /

Py Pand PP, (or P, P and P' %) are called segments of the
tract 12 P, and P P: PP, (or P,P': P'P,) is called the
distance-ratio of 7 (or P') to P, and P.. This distance-ratio is
+ or — according as the division is irner or outer.

If P be the (inner) mid-point of the tract, then p; = pq,

-'-m:ﬂ:1+|t‘2:‘zq ?;=?IF[+_*IF2:‘2‘; ilEi‘.

the Cds. of the (inner) mid-point of a tract are the half-sums of
the like Cils. of its ends.

If uy= — po, P' is the outer mid-point, and x and y are
infinite; the outer mid-point of a tract is at o * on the RL. the
tract is part of.

EXERCISES.

l———
1. Find the Cds. of the points which divide the tract (7,11)(3,3) in
N
the ratio 2: 3, and the traet (3, 13)(—7,—1) in the ratio 3: —4.

* See note, page 196.
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2. The vertices of a A are (xry, ¥,), (ry ¥,), (x5, %,) ; find the points that
cut its medials in the ratio 2: 1, reckoning from the vertices.

Hixt. Take care to think as much, and reckon as little, as possible.
Here, taking any vertex, we find the x of the division-point on the medial
is x4+ x,4+2;:3; s.the yis y; + ¥y, + y3:3. These expressions, being sym-
metric, like-formed, as to the subscripts, hold for all the medials; .. the
3 points fall together, are one. This point is named mass-centre of the A.

3. A point P starts from (z,,y,) and moves halfway toward (z,,y.,),
then turns and moves one-third of the way toward (x;, y;), then one-fourth
of the way toward (x,, 7,), and so on, till at last it moves one nth of the
way toward (z,,7,); where does it stop?

The final position of P is called mid-centre or mean point of the n points.

4. The point P starts from P, and moves over 2 of the way toward
Hy
P,, then over _*2__ of the way toward P,, then over ___ " of the
+ . by gy g
way toward P, and so on ; where does it stop ?

The final position of P is called ceatre of proportional distances.

5. Three vertices of a parallelogram are (xy, #,), (2o ¥,), (%3 75); find
the Cds. of the 4th and of mid-points of the diagonals.
What do the results mean geometrically ?

Parallel Projections.

18. The intercept, on any RL., made by two || planes through
the ends of a tract is named parallel projection of the tract on
the RL. 1f the planes be L to the RL., the projection is

orthogonal ; otherwise, oblique. Thus, OR and OD are projec-
tions of OB : OR, orthogonal ; OD, oblique.
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Clearly, projections of the same tract by the same planes on

| RLs. are equal. Accordingly, in comparing the lengths of a

tract and its projections, we may suppose all the lines of pro-
jection to pass through one end of the tract. Calling the tract

Pt
t, its projection p, and denoting by dd' the angle from any
direction d reckoned around to any other direction d', we have

by the Law of Sines,

P
~ A i
p:t=sinil:sinpl, whence p=ti- =0 ii
sin pi

i.e., the projection of a tract equals the product of the tract and the
quotient of the sine of the slope of the tract to the direction of pro-
Jection by the sine of the slope of the projection to the same
direction.

By odds the most important || projection is the orthogonal.
The X of a tract with a line of orth. proj. is named direction-
angle, its cosine is the direction-cosine of the tract. Since the
X of a RL. with a plane is the complement of its 2{ with a L to

~—~y
the plane, we have  p=t.cospt; i.e., orth. proj. of a tract
= product of the tract by its direction-cosine.

19. If we project on any RL. the sides of any closed poly-
gon, taken in order, the end of the projection of the lust side
will fall on the beginning of the projection of the first; i.e.,

The sum of the projections of the sides of a closed polygon
ts 0.

Hence, The projection of any side equals the negative sum of
the projections of the other sides.

Or, The sum of the projections of a train of tracts between two
points equals the projection of the one tract between them.

If the tracts projected and the RLs. they are projected on
lie all in one plane, we may put projecting RLs. for projecting
planes. For this, the figure illustrates the above proposi-
tions.
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We see A'B': AB=sin A'BB':sin AB'B. 1If AB'B=90°,
A'B'= AB-cos BA'B'. A'B'is the projection both of AB and
of AFEDCB; the projection of BCDEFA is B'A' or —A'B'.

/u

E

Y

\\4_/‘

¥y EB A4 D '

20. The tract froms the origin to any point is called the
radius vector of that point. In the light of the above we may
now define :

The rectilinear ¢ds. of a point are the projections of its radius
vector on each of two axes in its plane, || to the other axis.

The polar Cds. of a point are its radius vector and the direc-
tion-angle of its radius vector reckoned from the polar axis.

The doctrine of projections is of prime importance in mathe-
matics. It is here used to treat the

Transformation of Co-ordinates.

21. The Cds. of a point vary with the system of Cds.
(Art. 12). To express the Cds. of a point, in one system,
through the Cds. of the same point, in another system, is to
transform the Cds.

Several cases arise.

I. To pass from rectilinear to polar Cds.,the origin being the
same for both. From the above definitions, or from the figure,

we have at once:
- ,F-q - ﬁ - -
% : p=sin py : sin xy = sin (v — @) : sin w,

. L \ Fan .
Y:p=sinz,:sinzry=sinf:s8inw;
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These Eqs. presume that the X-axis is the polar axis; if the
X-axis be sloped a to the polar axis, put § — a for 6.

For w = 90°, x = p cosb, y = p siné.

II. To pass from one rectilinear system to another with same
origin. By Art. 19 the proj. of p, on OX || to OY, equals the
sum of the projs. of ' and 7';

" / ’ s [} ™ P 1 T
; sin ¥ sin . : ;
Coe=zn. ——f-g+y’--—f—3-’; or, «.sin xy =x'sin x'y4y'sin y'y,
sin xy sin ay

o i g R s
and y-sinay = &' sin xz' 4 y' sin xy'.
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This last Eq. is got by first exchanging = and y in the Eq.
above it, which amounts to projecting on OY || to OX, and then
exchangmg the letters in the angles, it being remembered that
a.b — —ba and sin ab = — sin ba.

Angles are best reckoned from the 4 X-axis or foward the
+ Y-axis.

If the X'- resp. Y'-axis be sloped a resp. 8 to the X-axis,
we may write

z 8in o = &' sin(w — a) + ¥’ sin(w — 8),
.  ysine=2z'sina 4 y'sin g.

From these general formula the student may find special ones :

(a) For passing from rectangular to oblique axes.

(b) For passing from oblique to rectangular axes.

(¢) For passing from rectangular to rectangular axes.

The results are not so symmetric and easy to recall as the
general formulee. Let the student draw the figures and inter-

pret geometrically each term in each Eq.

III. To pass to pamﬁe! axes through a new oﬂgm Be OX,
OY the old axes, O'X", 0’ Y the new ones ; o', y', the old Cds. of
the new origin O'. If z, y
resp. ', ¥' be the old resp.

E new Cds. of P, we have

z=2'+2, y=y +un
i.e., for the old Cds. put the
new Cds. plus the old Cds.
of the new origin.

- ﬁ — X If we will change both
/ origin and axial directions,

we can change first either,
then the other, or both at
once, by adding to the ex-
pressions for the old Cds. the old Cds. of the new origin.
Calling these latter, as above, x,, 7, and putting ¢, q., ¢/, ¢’
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for the sine-quotients in IL., we get as the most general relations
between the Cds. of a point referred to two systems :

=22, + @2+ @y, y=mhn+qa"*'+ ¢y

Conversely, such a pair of Eqs. may always be interpreted as
a transformation of Cds. For a;, i, may be taken as old Cds.
of a new origin (or negative new Cds. of an old origin), and
we can find w, a, and S such that sin(w—a): sine =g,
sin{w — 8) : sin w = ¢q,, etc.

22. Note that the general Eqgs. of transformation are homo-
gencons of 1st degree in Cds. So much might have been
assumed, it being eclear that a length, as # or y, can be ex-
pressed only as made up of lengths. Under this assumption,
by determining the values of 2y, #,, and the ¢’s, the student may
now get the Egs. already found ; this is recommended as a use-
ful exercise.

The magnitudes x,, ¥, and the ¢’s, are not of the same
class ; the latter are pure numbers, trigonometric ratios, while
the former are Cds., metric numbers of tracts. A number is
said to have as many dimensions as the geometric magnitude it
stands for: the metric number of a lengil, area, resp. volume
has one, two resp. three dimensions. A pure number, the ratio
of two like metric numbers, is of Oth degree or dimension.
Thus, 64' = 8° = 4° has one, two, three dimensions, according as
it is the metric number of a length, an area, a volume.

It is plain that any Eq. may be thought as homogeneous by
thinking the numeral coeflicients of proper dimensions.

23. If in any Eq. f(2,y)=0, weputforz and y any
linear functions (i.e., functions of 1st degree) of ' and y', we
are said to make a linear substitution or transformation. Such
a substitution may, of course, change the form of the Eq., but
it will not change its degree in & and y. For it cannot raise
the degree, since any term or factor of a term, as a7, will be
replaced by a series of terms, none of degree higher than the
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rth, in 2" and %' ; neither can it lower it, since then by express-
ing z' and ¥’ as clearly as we can, linearly through x and ¥, and
re-substituting, we should get the original IXq., and so raise the
degree by a linear substitution, which is impossible.

This again we might have foreseen. FYor the picture of
S(x,)=0 is a curve whose degree tells the number of
points in which it may be cut by a RL. (see Arts. 24, 16); a
linear substitution is interpreted geometrically as a change of
axes; by such a change we in no wise affect the curve, hence
do not change the number of points in which a RL. cuts it;
hence we do not change the degree of the Lq.

The doctrine of Transformation of Cds. is of special impor-
tance to Mechanies. Any motion of a plane system of points
may be resolved into a push and a turn. A push corresponds
to a change of origin simply, a turn to a change of awial
directions; a twist corresponds to a change of both.

ILLestrAaTIONS. 1. Transform o+ l4ax 44— 10y +4+49=10
to || axes through (—7,5).
We have
r=x'—7, y=y+5;
A= =D+ (y+3) =10+ +49 =0
or, .1;'2-]-3;'2 = 25.

2. ©—»=d’. Pass to axes halving the £ between the old
ones.

We have
w=90°, a=453°, B=135°;

-'lm_ﬂ.=4501 m_ﬁ=-_'45u;
) f
- - L4 | ':F-_'
o= sin 45° — y' sin 45° =2£—9,
2
P o= - r - -0 a.’+?):t
y=2« sin45" 4y sin 135" ="~ g
V2

whence, substituting and dropping accents,

2xy = — ",
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3. 324 day+ 5y — Sz —~Ty—21=0= f(x,y). Change
the origin and turn the axes, keeping them rectangular, so as to
muake the terms containing the first powers and the product of
x and y vanish,

Putting o'+ o, for 2, y'+ », for 7, and collecting, we get
S 4 day' 4+ 59"+ 23w, + 29, — )’
_ + 2@+ 55— DY+ (@) = 0.
If the terms in #' and %' vanish, then
3oy +2h—3=0, 2x,+5—5=0;
whence, ®=1:2, y,=1:2.

Hence, f(x,y)= 33 =3-}1+4-14+5-}—-7-%
— 5.3 —21=—24.

Accordingly, on passing to new || axes, through (4,4), the
I£q. becomes

Ja'* 4 daly' 4+ 5y'*— 24 =0.

Now turn the axes through an 2 «; then, X and Y being

new axes,
2'=xcosa—ysina, Y ==asina+4ycosa;

_-—E e " ]
c.(3cosa +Isina +4sina-cosa)r’

+(4sina-cosa+4 cosa — 4sina’)ry=24.

If the term in xy vanishes, then

sina-cos e+ cosa’ —sina =0,
or, +sin2a=—cos2a, or, tanZa=-—2.
Hence, on reduction,
(4 +VB3)at+ (4 — V5= 24,

wis 58° 16' 57" or —§31°43' 3"} ; but it is needless to find a
from the tables ; it is much better to construct it geometrically.
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We pass now to the geometric interpretation of Egs., and
naturally begin with the general

Equation of First Degree in « and .

24. This has the form Ilz+ my 4+ n= 0.

To interpret it, let us pass to a new system of Cds. 2' and 7',
such that «'=lr+my+n. Every point whose old Cds.,
x and y, satisfy Ilz4+my+n=0  has its new Cd. a'=0,
and clearly all such points are on the Y'-axis; again, every
point on the ¥Y'-axis has its 2'=0, and hence has such old
Cds., z and y, as satisfy Ilr4+my+n=0: this Y'-axisisa
RL. ; hence every point whose rectilinear Cds., x and y, satisfy
an Eq. of 1st degree in x and vy lies on a certain RL., and the
Cds., x and y, of every point on that RL. satisfy that Eq.

Conversely, suppose given any RL., and seek the form of its
Eq. Assume it as a new Y'-axis; for all points on it and for
no others z'=0; but any Cd., &', is a linear function of
the old Cds.,z and ¥; i.e., z'=Ilr+my+n; hence for all
points on this RL. and for no others e + my+ n=20.
Therefore,

I. The geometric picture of any Eq. of 1st degree in rectilinear
Cds., z and v, is a RL.

II. The alyebraic picture of any RL. is an Eq. of 1st degree in
rectilinear Cds., x and y.

We speak indifferently of the Eq. and of the RL.:
lx +my +n=0. A convenient abbreviation for lz+ my<4n
is L; if I, m, n, have any subscript, L has the same subscript,
and conversely, so that L,=lz+my+n,. We shall also
speak of the right line L, meaning the RL. whose Eq. is
L=0.

The above proof is the most natural, and presents no diffi-
culty ; but owing to the great importance of the proposition, it
will be well for the student to frame a proof from the figure:
showing that the Eqs. of the 4 RLs. are really such as are
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written by them ; thus showing that by changing «, b, s one of
these Eqs. may be made to fit any RL. that may be drawn in
the plane.

25. The values of = and # range in pairs picturing the
points of the RL. each from — o to 4« ; hence » and y are
called running or current Cds. — For any one RL. I, m, n
are not definite, since we may multiply the Eq. by any expres-
sion we will, without changing the relation between 2 and y.
But the ratios l:m, m:n, n:l are jfized for any one RL.,
different for different RLs. They are called arbitraries or
parameters. ‘Their number is appavently three, really two, for
the third is but the quotient of the other two. Clearly they are
not changed by multiplying the Eq. at will. To interpret them,
assume any axes, and construct the RL. To do this it suffices
to know two points of the RL. or one point and the direction.
To find a point, we must find a pair of values of 2 and y satis-
fying the Eq. To do this, we may assign any value, say, to z,
and reckon the corresponding value of y. The simplest value
we can assign to @ is 0; the corresponding point will be on the
Y-axis, since only on the Y-axis are points whose x is 0. The
corresponding value of is —n:m. This, then, is the distance
01, from the origin at which the RL. cuts the Y-axis. Likewise,
putting ¥ = 0, we find the distance from the origin at which the
RL. cuts the X-axis to be —n:I. The RL. making these inter-
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cepts, —n:m resp. —n:l on the Y- resp. X-axis, is the
RL. lx +my 4+ n = 0.

Two of the ratios are thus seen to represent negative inter-
cepts made on the axes by the RL. Denote these intercepts
on the X- resp. Y-axis by a resp. b, so that a=—n:l,

= —mn:m. Then, on transposing n and dividing by it, the

Eq. becomes E -+ !—; =1, which is the Intercept Form (L.F.).

The 3d ratio —Il:m= —g let us denote by the symbol s

and name the Direction-Coefficient of the RL. Note that s is
the negative ratio of the coefficients of x and y. If @ be the
slope of the RL. to the X -axis, then clearly

s=sin @ :sin(w —4).

Hence for o = 90°, i.e., for rectang. axes, s=tan 6.

Solving the Intercept Form as to y, we get y=sx+ b,
which is the Directional Form (D.F.).

Drop from O on lz+my+n=0, a_L psloped a resp. 8
to the X- resp. Y-axis; then p=a cosa=>b cosf.

Substituting in the L.F. for a and &, we get
xcosa+yeosB—p=0,

which is the Normal Form (N.F.).
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For w =90°  cosf3=sina; hence, we get
xcosa+ysina—p=0,
an important special form.

Hence we have the following Rules :

To hring the Eq. of a RL. to the I.F., divide by the absolute
term taken to the right member. This is possible unless the
absolute he 0; then the pair (0,0) satisfies the Lq., and the
RL. goes through the origir.. — In general, if the absolute i any
Eq., of any degree, between Cds. be 0, the curve goes through the
origin. —To construct a RL. through the origin, assign cither
Cd. any convenient value, then reckon the other Cd. ; this pair
pictures a point, which with the origin fixes the RL.

To bring to the 1).F., solve as to y. This is possible unless
the coefficient of y be 0, i.e., unless y does not appear at all ;
then the Eq. reduces to # = a constant, — the RL. is || to the
Y-axis.  Likewise, if » does not appear, y = a constant, —
the RL. is || to the X-axis.

To bring to the N.F., multiply by the normalizing factor #.

To find F, we note that, since by hypothesis

Flx + Fmy + Fin =z cosa+1cos 8 —p,
Fl=cose, Fm=cosfl, Fn=—yp,

whence, F=—p:n.

{ n? n2 n n n on o .
P ;{_T_i__,‘:_{_g_.._—{:(}ﬂ.m = —+— Bl w,
L m L om %

since each is the double area of the A OLI. Hence
F=sin®: VI +m - 20Ln cos o.

Before the / we have choice of signs; we agree to take
always that sign which will make the absolute negative.

For o = 90°, the most important case,

F=1:VI+m.
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EXERCISES.

Construct the following RLs., reduce the Egs. to the various forms, for
w =90, unless otherwise stated :

1. 51‘—33{ +30=0.

The LF. is EE + % =1, got by dividing by —30;

the D.F. is y = §x + 10, got by solving as to y;

the NF. is ——2— z 4+ —5_ =0, got by multiplying by F=—1: V34,
Vi V34

a=—6, b=10, s=5:3=tans, p=30:V34,

For w=60°, a, b, s are the same, but F=—v3:14, p=156v3:7.

2. 3x4+T7=0. 4. 3x—-2y=0. 6. 2x+4y="9 (w=60"),

3. Ty—9=0. 5 3xr—4y=12.

7. Howare r+ y=0and x—y=0, r—~y+a=0and x+y +6=0
related (e at will) ?

26. Angle between two RLs.: Lhe4+my+n=0 and
L 4 moy 4 1, = 0. The X ¢ between the RLs. equals the
X a; — a, between the s p,, p, let fall on them from the origin.
By Art. 25,

cos a) =1, 8in w : VI7? + m;* — 21, m,; cos w,

cos ap = l,sinw: VI 4+ ms — 2 L,y cos w.
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Square, take from 1, extract square roots; there results,

8in a; =My — I, cos w : VI 4 m,? — 21,m, cos w,

8in ap =My — {; COS w : \f‘(_ﬁ

From applying the Addition-Theorems of Sine and Cosine
there results:

sin ¢ = sin (ay— ag) = (hmg — bymy)sin v : V(1)-V(2) ;

co8 ¢ = cos(a;— a3)
= $1 L+ myma— lymg + Lymy cos w} : V(1) -V (2) ;

tan¢ = tan(a; — a,)
= (!!1 mg—gzml) sinw : 31132"{'%1 mg—'gl’.i'ﬂ-z-*"fgﬂli cos mi H

SPECIAL Casges. 1. If the RLs. be ||, =0, .".tang =0,
Sohmy =Ly =035 or, L:my=1Il:m.; or,s=238; Ii.e.,

RLs. are || when, and only when, their Direction-Coefficients
«are equal.

2. If the RLs. are L, ¢=90° .".tan¢ =0,
Ll 4 mymg — (my 4+ Lmy)eos w=0. For w=90°,

l m 1 4
flfg-l—']‘ﬂ-lmg: O, or '—‘]"_'—--‘"‘—2, or 31=—' '—-; I-E.,
My Ly 8o

In rectangular Cds. two RLs. are L when, and only when,
their Direction-Coefficients are negative reciprocals of each other.
This is the case when the coeflicients of # and y in the one Eq.
are the exchanged or inverted coefficients of 2 and % in the

other, with the sign of one of them changed.
The absolute term affects neither perpendicularity nor paral-

lelism. The rectang. Eq. of the RI. through (a,, %) L to
le4+my+n=0 is I (y—y)=m(x—ux). Why?

InLustraTIONS. 1. The sides of a A are: 3x—4y412=0,
dx+42y+10=0, 2 +5y+5=0; find its angles (v = 60°).
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_(26—2)-3-V3 23

tan 1#)1 =} = v . = prsll
54+10—(25+2)-3 /3
whence P, = 85° 47’ 28"\,
Find ¢. and ¢,, check by ¢, + ¢, + ¢3 = 180", and construct

the A.

2. Find Eq. of RL. through (1,2) L to 3z45y=7, and
draw it, for @ = 90° and o = 60°.

27. Distance from a point (x',y'") to the RL.
xcosa+ycosB—p=0.

The Eq. of a RL. || to the given RL. is
zcosa-+tycosf3—p' =0,

If this RL. goes through (x',%'), then
z'cosa+y' cosB=p'.

Subtracting p = p, we get
»' cosa+y cosfB—p=p' —p,

which is clearly the distance sought.

This result is 4+ or — according as («',%') lies on the outer
or inner side of the RL. (the inner side being next to the
origin). Hence the Rule: Reduce the Eq. to the N.F., put for
the current Cds. the Cds. of the point ; the result is the metric
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number of the distance from the point to the RI., and is 4 or
— according as the point lics on the outer or inner side of the
RL. If weput N=xcosa+ycosfB—p, then N is the
distance of (x,y) from N =0. _Vchanges sign, passing through
0, as (@, %) changes sides, passing through .V = 0.

Carcfully distinguish between the capression NV and the Eq.
N=0. In N, zandyare Cds. of any point in the plane; in
N=0, z and y are Cds. of any point on the RL. V=0. It is
this double use, bewilder though it may at first, that gives the
N.F. its importance.

ILrestraTioNs. 1. Find the distance from (3, —4) to
daor42y=71.

o -
For o =90°, N.F. is "a_"_+ — % _—0: hence, the dis-

tance is —3: 2V, vh  VE 2+/5

For w = 60°, the distance is —%. The point is on the inner
side of the RL.

2. Find the distance from (2,3) to 2x 4y =4.
3. Find the distance from the origin to a(x—a) +b(y—0)=0.

The Right Line under Conditions.

28. By Art. 25 the Eq. of the RL. contains two arbitraries
or parameters. If we hold one of these fast, for every value of
the other we get a RL., and for the totality of values from — to
+ % we get a family or system of RLs. Thus,in  y=sz+1D,
holding » fast and assigning s the whole series of real values
from — % to 4+, we get a family of RLs.. all cutting the
Y-axis & from the origin. Loosing b, assigning it the same
series of values, we get a fumily of fumilies, one through every
point of the Y-axis. Except this Y-axis, which is common to
all the families, no RL. of one family is a RL. of another: all
are different RLs.: i.e., all possible different RLs. in a plane,
enough to fill the plane, form a fanidly of families, an infinity of
infinities of RLs. ; l.e., the plane viewed as full of R Ls. is doubly
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extended. Hence, to know a RL., we must know two things
about it : what member of what family it is; and to {ix a RL.
we must put it under fwo conditions: we must determine the
fwo parameters in its Eq. We consider here some simplest
cases.

N

I. To find the Eq. of a family of RLs. through a point
(21:3) -

The Eq. of any RL. is y=sx+ 5, and the Eq. y, =sx,+ b
says that the RL. passes through (xy,7,). This last is not an
Eq. of a line, since it contains no current Cds.. but an Eq. of
condition. By its help we can eliminate s or b, better b, and
get

y—h=s(x—x).
For any one value of s this is the Eq. of a RL. (since it con-
tains current Cds. in 1st degree only) through (z,,%,), since
that pair of values satisfies it. To any slope 8 of such a RL.
there corresponds a value of s; viz., s=siné: sin w — @, and
conversely ; hence, letting s range from —x to 4+, we get
all RLs., the family of RLs.. through (x,7,).

To determine a member of this family, we may impose various
conditions ; as, that it go through (x;7.). Hence,



THE RIGHT LINE UNDER CONDITIONS. 37

II. To find the Eq. of @ RL. through two points.

Since it goes through both (z,#) and (z.,¥.), it is com-
mon to the families

y—y=s8(x—x) and y—y=s(r—a,),
and for it s has the same value in the two Eqs. ; hence, elimi-
nating s, we get the Eq. sought:
Y— Y —Yo=T— 2y T — Xy.
Let the student interpret this proportion geometrically.

We may reason otherwise ; thus:
Be lx + my + n =0 the Eq. of the RL. ; since it goes through

(%1,21) 5
lzy +my, +n=0;

and, for like reason,

lx, 4+ my, + n = 0.

By Introduction. Art. 14, these Eqs. consist when, and only

when,

vy 1|=0,
R
L@y Yo

This Eq. of the RL. is equivalent to the other, and verv con-
venicnt.

2y ) 1|=0
1 - M= _ 0 — 3
CoroLLARY. A s Or | @ ¥ 1
Ys— Y2 E— Xy x5 Ys 1 |

is the Eq. of condition that (&,,%), (2. %), (5, ;) lie on a RL.

III. To find the Eq. of a RL. through a given point (x,,)
and sloped ¢ to « RL. whose Direction-coefficient is 8; (o = 90°),
The RL. is of the family ¥ — %, = s(¢ — ) ; also, by Art. 26,

Iy —lLim __ 8 —s or s=-_S1—tané
L1, + mm, 1+331* 1+31tu.nq5'

tan (ﬁ: ——

& — tan
sy ==L (g g,

14 s tan¢
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Cororrary. If ¢ =90° i.e., if the RL. is to be L to the
given RL.,

1
Y= =— ﬁ_(:.t:——x,} or El(fj—y])=1}ll($—ﬁl}.
1

Let the student solve this problem for « not = 90°.

EXERCISES.

1. The vertices of a A are (5, —7), (1,11), (— 4, 13); find the Eqs. of :
its sides, its medials, s through the mid-points of its sides, 1s from its
vertices on the counter sides; find the lengths of the last Ls.

2. Find the Eq. of the RL. through (r,, y;) cutting Pli_li’g in the ratio
| Rl o

3. Find the RL. through (5,4) forming with 4+ axes a /A of area 80,
(= D07).

4, The sides of a 4-side, taken in order, are y=0>5x, 6y +5x =235,
3r—y=21, 4y+4+ 9x=0; find the Cds. of its vertices, Eqs. of its dmg—
onals, and of the Junctmn-llnes of their mid-points.

5. Find Egs. of RLs. through the junction-point of 3r—4y =7 and
2r+5y+ 8=0, and sloped 60° to y=4x+ 3.

6. Find Eqs. of RLs. sloped 30° to X-axis and cutting Y-axis 7.5
from origin.

7. Are (6,2), (i,—3), (—5,—95), on a RL.? Are (3,—1), (1,2),
(7,—7)1?
8. Two cnunier aides of a 4-side being axes, the other sides are

lir = - i - u
E-.;"+ 2% =1, ﬁ + ﬂ 1; find the mid-points of the diagonals.

29. The parameter of a family of RLs. is the arbitrary in
its Eq.

Tueorem. When the parameter appears in 1st degree only,
all the RLs. of the family go through a point.

Solve the Eq. as to the parameter A, we get
A= (b2 +my+n) : (L + may +ny),
or ha 4+ w4 ny — A(lyx + may + 1) =0,
or L,—AL,=0.
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Whatever A be, this RL. goes through the junction-point of
the RLs. L, =0 and L,=0, since the pair (x,%) which satis-
fies both these Eqs. also satisfies Ly — AL, =0.

Conversely, «ll LlLs. through the junction-point of L, =0 and
L, =0 are of the family L, — A L,= 0. For the Direction-coeffi-
cient is  s=(AlL—1): (i, —Am,), and this ranges with A
through all real values.

Ilence, to find the Eq. of any special RL. through the junc-
tion of L, =0 and L,=0, which let us call the point (L,. L),
it suffices to find the corresponding special value of A, which
we may call the parameter of that RL. Thus, if the RL. is to
pass through the origin, then #n; —An,=0, A=mn,:n,; if it is
to be || to the X- resp. Y-axis, then 1§, —AlL=0 resp.
my—AMm, =0, A=I:0, resp. A=m;: M.

The student may substitute these values of A, and find the
Eqs. of the RLs.

30. The above is a special case of the important theorem :
the curve ()}, —AC,=0 goes through all junction-points of
the curves €\ =0, C;=0 (X being any constant). For
any pair (a,%) that satisfies both C;=0 and C;=0, sat-
isfies also O, —AC, =0.

This again is a spccial case of the still higher theorem: If.
when two Eqs. are satisfied, a third is also satisfied, the third
curve passes through all junction-points of the other two.

The proposition is evident as soon as its terms are under-
stood.

Henee, it is plain that the RL. L+ pln=0 goes
through the junction of L,=0 and L,=0, since its Eq.
is satisfied when the others are.

If the expression  pydn+ poln 4 py Ly, =0, i.e., vanish
identically, then the three RLs. L, =0, L,=0, IL;=0, pass
through a point, since the pair that satisfies two of the Egs.
must satisfy the third. IHence, if the sum of some multiples of
the Eqs. of three RLs., vanish identically, the three RLs. go
through a point.
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If Ly + poLo+ psLy=0,  but not identically, then this
Eq. imposes some condition on the symbols z and 7 ; hence it
is the Eq. of some line, and in fact of some RL., since z and ¥
enter the Eq. in first degree only. We may go further, and
say that this Eq. may be made the Eq. of any RL. by choosing
the p’s properly. For lz+my+n=0 is any RL., and we
may choose the three u’s so as to satisfy the three Eqs. :

.l-'-131 +FJ2£2 +Fﬂ£3 — 31
My + preg + pay = M,
Ha ﬂl 'I" H'}lg + Fﬂ‘ilg = N.

The RLs. L,=0, L.,=0, IL,=0, determine a A, which
may be called the A of reference, or referee A ; and the expres-
sions L, L., L;, may be called the trilinear, or triangular Cds.
of points on the RL. py Ly + polig+ pg Ly = 0.

If Fy, F,, F;, be the normalizing factors of L,, L., Iy, then
F L, F,L, F;L, are the distances of any point (a,7) from
the RLs. IL,=0, L,=0, L,=0. Hence, it is scen that
the triangular Cds. of a point (2,y) are certain fixed multiples
of its distances from the sides of the referec A. Triangular Cds.
will be simplest, then, when they are the simplest multiples of
the distances from the sides of the A ; i.e., when they are the
distances themselves ; and these they are when, and only when,
the Eqs. of the sides of the A are in the N.F.; in the N.F. we
write them, N;=0, N.=0, N;=0, where

N.=xzcosa,+ 1y cos B, — p,.
Hence, calling now the multipliers of the N’s +’s, we have
"N FreNoF vy Ny=10
as the normal Eq. of a RL. in triungular Cds. : N, N;, N;.

31. Here the point has three Cds., the N’s, while we know that
fwo are enough to fix it. But, since thd Eq. is homogeneous in
N's, we ean at once reduce the number of Cds. to two by
dividing through by one, as N, and treating the quotients XV, : IV,
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N, : N, as the independent Cds. In general, the triangular Cds.
of a point are bound together by « certain constant relation. For
if we suppose, as we may, that the origin O is within the
referce A, and put r, 74, 7, for the tracts between the vertices, A
for its area, then for every point (x,y) or (.V,, ¥y N;) we shall
nave Nyt N b Ny =—2.A.

This is clear at once when P is within the A, and is equally
clear, on proper regard of signs, when P is without. DBy multi-
plving this Eq. appropriately, we can express any constant
homogeneously through the triangular Cds. of any point. If
the origin O be without the A, it suffices to change the sign of
one of the ¥’s.

A general test of whether three RILs. L,=0, L,=0,
L; =0, go through a point, is found in the Determinant
I, my 1y,

L. s Mg |
Is g iy |

which, by Introduction, Art. 14, must vanish when the three

ke, ha+my +n =0,
La 4+ mey + ny=0,
and ly@ 4 myy 4 1y =0,

consist, are all satisfied by the same pair (@,y).
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when through a point go the RLs.
N+ v/ No+ v/ N; =0,
' N+ 1" N+ N3 = 0,
"N+ v N+ "' Ny =0.

Geometric Interpretation of X.

32. A family of RLs. through a point we may call a peneil,
the point itself, the eentre of the pencil ; the two RLs. through
which the others are expressed, the base-lines of the pencil. If
the Eqs. of the base-lines be in the N.F., then N, —AN,=0,
for any special value of A, is the Eq. of a RL. of the pencil.

Here A = N, : N, = ratio of the distances of any point of the RL.
Ni— AN, =0 from the base-lines N;=0 and N,=0; or, A=
ratio of the sines of the slopes of the RL. N, — AN, =0 to the
base-lines Ny =0 and N,= 0.

If we call the angle containing the origin, and its vertical
angle, and the lines in them, all inner, the others all outer, then
we see that for inner lines the distances are like-signed, as
from P,. Py, and .".A i3 4 ; for outer lines the distances are
unlike-signed, as from P,, P, and .". A is -
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If we call the inner side of a RL. also the — side, the outer
also the + side, then angles and sines of angles reckoned from
the + resp. — side of a RL. are themselves 4 resp. — ; we
agree to reckon angles from the fixed to the variable RL.

33. For the inner resp. outer halvers of the angles at (N, NV,)
the distances are equal and like- resp. unlike-signed; hence,
A= +1resp. —1; hence, the halvers are N, — N,=0 resp.
N+ N, =0.

Hence, to find the Eq. of the inner resp. outer halver of the
Xs between two RLs., form the difference resp. sum of their
Egs. in the N.F.

N.B. Of the two equivalent Eqs., + N =0, we have taken
that as the N.F. in which the absolute term is negative. DBut
this test fails, and with it the test of which is the 4 and which
the — side of the RL., when the absolute term is 0, i.e., when
the RL.. goes throngh the origin. In this case, we may agree
to take always the term in y, or always that in z, as positive.
If we make the first agreement, as is common, the + side will
lic next to the + Y-axis; for, holding 2 and letting 7 increase.
we must get a 4 result in the left member of the Eq.

34. This Abridged Notation (a single letter .V standing for
the left member of the Eq. of a RL. in the N.F.) with its imme-
diate outgrowth, the system of triangular Cds., yields a method
of great strength and beauty; we have space for but a few
simple

ILresTtraTiONs. 1. The inner halvers of the Xs of a A meet
in a point. For, be the origin within the A, and N, =0,
No=0, N;=0. its sides, then the sum of the Eqs. of the
inner halvers, N —N,=0, N,—N;,=0, N;,— N,=0, van-
ishes identically.

2. Two quter halvers and the third inner halver meet in a
point. They are N, +N, =0, N, 4+ N,=0, N, —N,=0;
multiply the second by —1, and sum.
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3. The Ls from the vertices of a A on the counter gides
meet in a point. The Xs being A,, A, A, the L from A, on
N=01s N,cos d,— Nycos.1,= 0 ; permute the indices, and
sum.

4. If through each vertex of a A be drawn a pair of rays
like-sloped to the sides meeting there, the junction-lines of the
junction-point of each couple next to a side and the counter
vertex meet in a point.

As

Be N,=0, N,=0, N,=0 the sides, A,. A.,. A, the
counter vertices, v, ys2» 7¥; the slopes of the pairs at the ver-
tices. The Eqs. of .1..1," resp. A, 4," are

N, sin(y. + A.)+ N;siny, =0,
resp. N sin(y;, 4+ 4;) 4+ Nosiny, =0,
The Eq. of A,.1," is, therefore.
N, sin(y, + ) + Ny siny, — AN, sin 3_;:;?{.; + Ny sin y;§= 0.
At A; both N, and N, are 0; hence,

X =siny, + <o : siny, + A,

o Ny sinyy - siny; + A; — N, -sin Ya* 8iny. 4+ A; =0
is the Eq. of 4,4/ ;

N, -siny, - siny, + I, — Ny-siny, - siny; + 4= 0

is the Eq. of A, ;
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NE'Sin TI " Ein }fg-l" ..(12— M'Ein TE“SiD ':."1 +A1= D
is the Eq. of 4,1,
Multiply by sin+,, siny, resp. sin+y;, and sum.

meet in a point.

5. If through cach vertex of a A be drawn a pair of rays
like-sloped to the halver of the X at that vertex, and if any
three of these rays mneet in a point, so will the other three.

If NV, sin A, -14?;— Nysiny, =0, N, Sillﬂm—m siny; =0,
Nysind, + vy — Nesiny; =0, be any three, the others are got
by simply exchanging the ¥’s in each Eq. The value of any
N in one of these Eqgs. is not in general the same as its value
in another; but if the first three RLs. meet in a point, the first
three Eqs. must consist for one set of values of the N's; hence
we may transpose, multiply, cancel the product N, N, N, and
get as a condition that the three RLs. meet in a point, the Eq.,

sin Ay 4 ve - 8in ;4 v5 - sin A, 4 y; = sin yy - sin y, +sin 3.
Now, clearly, exchanging the N’s in each Eq. affects not this
result.
6. If the three Ls from the three vertices of one A on the
three sides of a second A meet in a point, so do the three Ls
from the three vertices of the second on the three sides of the

first.
Be the sides of the one A N, =0, N,=0, N,=0, the sides

of the other N/=0, N,/)=0, N,/=0; then
i T ST )
;cos Ny N;= N,-cos N}'N,, N.cos N,N/= N,.cos N, N,

are a pair of corresponding 1s. Let the student complete the
proof.
Polar Equation of the Right Line.

35. If the L from the origin on the RL. be sloped a to the
polar axis OI), we have at once,
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pcos(f—a)=p

Let the student get this Eq. by transforming to polar Cds.
from the N.F.

P

|

EXERCISES.

1. Reduce p=2asec (E +~E—) to rectang. Cds.

2. Find where p=a sec (E -—1) and pcos (H —-—1) = 2a meet, and
under what angle. 6 2

3. Find where the | from the pole O meets the RL. through (p,, 8,),
(P2 83).
Miscellany.

36. The Eq. of the RL. through (., %.), (as,%;), in the
N.F. is

z y 1|sine:y/§s—y +E—=a +29%—Y,; 84— cosw} =0.
3 Ys 1
x5 Ys 1|

The left side is the distance from (z, ) to the RL., the 4/ is
}_.—I

the length of the tract (z,..)(#;,7%s;); bence, their product,
(z1,7), being written for (x,%), or

|2 ¥y 1] sin o,

| T3 ¥ 1

Py Y 1
is the double area of the A whose vertices are (25,%), (22,%2) 5
(%3, Y3) -
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37. To find the area of a polygon whose vertices (taken in
order) are
(F1270) 5 (Zor¥2) <=+ (ZnsYan)-

Note that when one vertex of a A is the origin (0,0), its

2, Wi | s .

" };' ’ (1, 71)+ (%ay %) being the other vertices,
the axes assumed rectangular.  Now from the origin, assumed
within the polygon, draw rays to the vertices cutting it up into

n £ the double area of the polygon then is

@+
L Y

Now suppose the origin moved to (ay,%,) ; the double area
of the first A changes to

tlouble area is

m‘“ ﬂn.'l rl

By W[t Xy X |+
yn 5"1

Yo Uy | | ¥a-1 Y|

4 X, ms + 2 = »
F

. | —|—’ ay @ ||y ay .
5 ?fl +Jm /L +Ju O ”’f'-

Yo Y2 1 Lo W

" o

The first of these Determinants is the orviginal primed, the
last vanishes, the sum of second and third is

(' —m') + o) — ).

If we operate likewise upon the other Determinants, we shall
clearly get the original Determinants primed, while the sum of
the multipliers of x, and 3, will each vanish identically. Hence
wherever the origin be, the double polygonal area is

+i ‘Tﬁ 12 +'” +| mu mI. 1
P X3 Ys Y U1

3'1 mﬂ
Ya

the primes being dropped.

We thus learn that the sum of the areas of A with one com-
mon vertex, the other vertices being vertices of a polygon, is the
are of that polygon : a theorem important in mechanics. The
practical rule is to write the 2’s and #’s in order, each in a hori-
zontal row, repeating the first of each as the last; thus,

Xy &g X3 0+ Xy T,
Yp Yo Yoo Yn W1
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and take the cross-products of the consecutive pairs with oppo-
site signs. The algebraic fact that the sign of the area is + or
— according as we take one or the other set of products +,
corresponds to the geometric fact that we may compass the
polygon clockwise or counter-clockwise.

For axes not rectangular, multiply by sin w.

38. 7o find the area of the A whose sides are Ly =0, L,=0,
L; =0, form the Determinant of the coefficients :

I, m, ny |
I, my my i,
Is’mrs“af

and denote the co-factor of any element, as [, by that symbol
primed, 1,'; be (z,,7,) the junction-point of L,=0, L,=0.
Then we have z,=10":n/, y,=m/:n/, and so for (a,,%.),
(#3,%3). Form the Determinant of Art. 36 ; replace the column
of 's by n/:n), ) : %), n':n; set out the divisors of the
rows, n,', ny', n;'; there results

24 =|1'm;) ng | sinw: ny'- 0y ny'

=|lymyng|*sinw : | lym, |- lymg |- lym,|.

If two of the RLs. be ||, a factor of the denominator van-
ishes, the area is o ; if the three RLs. meet in a point, the
numerator vanishes, the area is 0.

39. To find the ratio p,: p, in which the tract (xy,9;) (225 7,)
is cut by the RL. lx +~my4+n=0. We have at once, on can-
celling the normalizing factor F',

M D lxy + my, +n

—

pe pe lmfmpfoa

When the section is inner, y, and u, are like-signed, p, and p,
unlike-signed ; when the section is outer. the p’s are unlike-
signed, the p’s like-signed ; hence the — signs in the above Eq.
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»E
%

[f the RL. go through (a,,%,) and (z,,%,), its Eq. is

¥ 1/=0; hence, p;: po=—| 2, 1 1 | 9 1
:1:“:?;31| ®g Uy 1 @ Ys 1
Ty Yy 1 ey 1 |yl
__bnp
P, P, P,

40. By the help of these expressions for p,: p, we can now
prove two fundamental Theorems on Transversals:
L. Three points on a RL. and the sides of « A cut its sides into
segments whose compound ratio is —1.

I1. Three RLs. through a point and the wvertices of a A cut its
sides into segments whose compound ratio is +1.

el

Be ABC the A, L =lx 4+ my +n =0 the transversal, cutting
the sides at A', B', C'"; be ,L=lz,+my,+n the result of
putting x,, ¥, in L for 2, y. Then, by Art. 39,
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BA': A'C'=—,L:,L,
CB :BA=—,L:,L,
AC': C'"B=—,L:.L;
the produect of these ratios is —1, which proves L.

Be (x,%) the Cds. of P, through which are drawn 14",
BB", CC". Then

B Ty ows B | oy iy, 1 |
—=—mnllix ol
___/_‘I_I' (_:" x -;‘; 1 l ar 3 ,.‘. 1 j
CR" ry oy 1) |y 1]
g | ey 1 R e Y 1 iv
BUA xy 1| |2z vy 1]
aor  Ahl | a1
5 P 1 Py 1
¢B A ” ¥ 1

In the product of these ratios the determinants of the denom-
inator are those of the numerator with two rows exchanged;
i.c., with signs changed; hence, the product is +1, which
proves II.

Note the order of letters and indices.

EXERCISES.

1. Find the areas of the A whose vertices are: (2,1), (3, —2), (4, —1);
i2,3), (4,—5), (—3,—06). Ans. 10; 29,
2. Find the area of the tetragon: (1,1), (2,3), (3, 3), (4,1).

Sofution. } %, 2 ‘11 }, 34+464+34+4—-2—-9-12—-1=—8; ... Ans. 4.

3. Find the area of the A: 2z —3y =5, 4x46y—-T, y—2x=0.

Cross Ratios.

41. A set of points on a RL. is called a range or row; a set
of RLs. through a point, a pencil; each (half-) RL., a ray.

The RL. is the carrier of the row or range; the point, the
centre or carrier of the pencil.
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The distance-ratio of P, to Pyand Pyis Py Py: Py Py (Art. 17) 5
and so the distance-ratio of I’, to PP, and Py is I\ Py P, P,

The ratio of the distance-rutios of two points of « runge to two
other points of that range is called the cross ratio of the range,
and is written
Pp, PP

P, PP :
3 5= P, P, P, P,

Obhserving signs, we see at once,

P, P, Py Py = 1l D Py,

e PP, PP,

or. simply, §1 23 4} = ireo
23.41

which is the neatest way to write it.

Clearly, the order of the points is essential. The allernates
in position, as 1st and 3d, 2d and 4th, are called conjugates;
the consecutives are non-conjugates; as 1st and 2d, 2d and 3d,
3d and 4th, 4th and lst. Any one has one conjugate, two
non-conjugates.

The four symbols may be permuted in 4!, = 24, ways. Any
permutation or order may he got from any other, as 1 2 3 4, by
one or more exchanges, which will be either of a pair of conju-
gates or of a pair of non-conjugates.

To exchange a pair of conjugates inverts the ratio.

-

14.32_23.41_1
$8:21 12.31 r

then 1143 2=

To exchange a pair of non-conjugates takes the complement of
the ratio to 1. For, exchange (say) 2 and 3 ; then
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13-24 _ (12+23)-(23+34)

$1824}=—1 et il v
32.41 32.41

_12-3 4+23(1 24+23+34)
32.41 32.41

Hence, to exchange two pairs of conjugates, or two pairs of
non-conjugates, keeps the cross ratio unchanged. Ilence there
are four permutations for which the cross ratio (or CR.) is the
same ; hence, too, there are six permutations, or six sets of
four permutations, for which the CRs. are different. By invert-
ing and complementing to 1, we get these values:

1 1 1

1
r, —, 1—r 1—2, 1—
2 'r1 ! 1—-*.*'T T | R—

The circle of these six values is complete ; any amount of
inverting and complementing will reproduce one of them. The
last two may be written

r—1 il r
r r—1

The ratio of the sines of the Xs into which a third ray cuts the
X between twwo other rays is called the sine ratio of the third ray
to the other two; the ratio of the sine ratios of two rays to two
others is called the cross ratio of the rays, and is written

. Ay . ! . f"'n . Fan
821234;=51n1 2: sin 1 4::5111] zl‘-smii_\\lr

. P 7
sin23 sin43 sin23-.sin41
when S is the centre of the pencil, and the rays are 1, 2, 3, 4.

When the rays of a pencil go through the points of a range,
the two are conjoined.
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From the figure, we see at once
AR STH =LY ]
p-12=81-82.sinl12, p-34=.83-84-sin3 4,
i T — T
p14=51.84.sin14, p-23=.82-83.sin2 3,
whence, §1234{=8§1234}; or

The C'Rs. of a conjoined range and pencil are equal.

Hence, holding the carrier of either range or pencil fast, we
may move the other at will.

If §1234}=—1=.S§1234}, the tract between two
conjugate points, resp. X between two conjugate rays, is cut
innerly and outerly in the same ratio by the other conjugates ;
the range resp. pencil is then called harmonie, and either pair
of conjugates (points or rays) is called harmonie to the other
pair, while the fourth element (point or ray) is called a fourth
harmonic to the other three in order.

If in an harmonic range one point halve innerly the tract
between two conjugates, the other (its conjugate) must halve the
same tract outerly, i.e., must be at «,

If in an harmonic pencil one ray halve innerly the X between
two conjugates, the other (its conjugate) must halve the same X
outerly; i.e., must be L to the first.
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Clearly, both these propositions may be converted by simply
exchanging the words innerly and outerly.

Also, if of two conjugates in an harmonic range one be at «,
the other halves innerly the tract between the other pair; and, if
one pair of conjugate rays in an harmonic be at R. 4, they halve

innerly and outerly the X of the other pair.

EXERCISE.
Prove by similar A that {1 2 3 4}= {1’ 2/ 3’ 4}

42. Cross Ratio of four rays given by their equations.

Be the base-rays, N; =0, N;=0, a pair of conjugates, and
be Ny=N,—MN;=0, N,=2N;,—\N;=0, the other pair.
Denoting the rays by their proper indices, we see at once, from
Art. 32,

13=_-5mi_‘, A‘z—s’m{f; hence {1 2 3 4}=X;: A,
gin 2 3 sin 4

If L,=0, L;=0 be the base-rays, f;, f; their normalizing
factors: then IL;=0, Li—AL;=0, L;=0, Li—MANL;=0
may be written in normal form ; thus,

Sila= 0, ﬁLa— }‘Ej_j - Jol; =0,
3

£Is=0, flzq—hjij-mﬁo;

whence, by the above, we have again, $1 23 4i=2X: A,

If L'=0, L"=0 be base-rays; then to find the CR. of any
rays, L'—\ L"=0, L'—X,L"=0, L'—XL"=0, L'—AL"=0,
take either pair of conjugates as base-rays, say first and third,
and express the other pair through them ; thus, L'—\LV'=L,,
L'—X\,L"=L,; whence, finding L' and L", and substituting,
we find the other pair are
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....}._*

o Sl *Ly=0;

I 8 A
gy ——————————————= _0 _.1.
1 }ls ) 3= Y I ‘?“'3

Al_‘lﬂi‘)‘ﬂ_')":_
Aﬁ'—.ils 'A‘_J"!’l

hence, i1234}=

43. If A;: A =—1, the pencil is harmonic; that is, spe-
cially, L'=0, ZL'"=0, and L'—AL"=0, L'4+AL"'=0
are two harmonie pairs. |

The four rays (1, 2, 3, 4) of the pencil (L', L") are har-
monic when, and only when,

M=o h—A g

Ag""ﬁa - J:\.{_')'.I
i.e., when  AMA;—F - A+ A A4 A A0, =0.

44. If 4, B and P, () be two pairs of harmonic points, then
for I midway between A and B, @ is ateo ; as P moves out
from its mid-position toward B, ¢ moves out from its mid-
position at o into finity toward B. As P falls on B, so does

S

I Q
/4 / /B N
Q. The same remarks hold when 4 is put for B; also, when
rays 84, ete., are put for points, it is necessary only to note
that for @ in o0 §Q is || to the carrier of the range.
If the CR.=+41, clearly a pair of conjugates (rays or
points) must fall together.
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45 If L,=0, L,=0 meetat S, and L/'/=0, L,=0
at S', any ray, L,—AL,=0, of the one pencil is said to
correspond to the ray, L/'—XL'=0, of the other; the pen-
cils are called homographic. Since the CR. of two pairs of
rays depends only on their parameters, the A’s, it follows
that :

The CR. of two pairs of rays equals the CR. of the correspond-
ing pairs in any other homographic pencil.

By eliminating A we get L, L,))— L.,L//=0; this, then, is a
relation between the Cds. (2,7) of any junction-point of two
corresponding rays; since the L’s are of first degree in 2 and 7,
this Eq. is of second degree in « and »; hence,

The junction-points of pairs of eorresponding rays in two
homographic systems {( pencils) lie on a curve of second degree.

EXERCISES.

1. N;=0 and .N,=0 enclose an X a; find the Eqs. of the 1ls to
them through their intersection (N, V).

2. Howdo N} —AN,=0 and AN, — N, =0 lie in the pencil (V,, N,)?

3. Show that the transversals from the vertices of a /\ to the contact-
points of the inscribed resp. escribed circles meet in a point.

4. N;+2N,=0 and N, 4+ A, N,=0 being taken for baserays in
N, + AN,=0, what is the
value of £ when N,+A’N,=0
is the same as N 4 AN,

+A(N,+A,N,) =0?

5. Is Bxr—10y4+4=0
of the pencil 5x — Ty 4+ 3
+A(2x43y—1)=07? If so0,
express its Eq. through

Tr— 4y+4+2=0
and 19rx+14y—4=0
as base-rays.

6. The CR. of a pencil is r; threcraysare L,=0, L,=0, L 4+aL,=0;
what is the fourth? E.g,11x—2y47=0, 3z24+56y=6, 1Ty=2zx425,
r=9:8.
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7. Four rays of the pencil dxr—Ty+3+A(2xr+3y—1)=0 arc
1lo+2y=0, r+5=13y, Tx4+2=4y, 15xr+8y=2; find the CR,
{First find Ay, Ay, Ay Ay d

8. The inner halvers of the s of a A& are cut harmonically, each by
the centres of an eseribed and the inscribed eirele,

9. Are these two pairs of rays harmonic :

Sy+4r=25, Zy—Sx=11; Ty—-2x=47, Wr—y=3"
10. Find the fourth harmonic to
Ly—al,=0, L+al,=0, L —A'L,=0.

11. Find the harmonie conjugates to each of the three rays in the
pencil L4 A L'=0, 42, L0"=0, L4+a,07=0. K.g, L'=2x+4 3y—5,
IM=Tr—2y+41; takeasrays, 13y—332=10, 232 —3y=2, Qxr+y=4.

¥ 3 ] ¥ )

Involution.

46. To any one pair of conjugates there is an infinity of har-
monic pairs of conjugates; for the kKq. that says the pair
(A k) is harmonic to the pair (A, x) :

Ik —A+Kk-A F x4+ 20=0 (1)

is clearly fulfilled for an % of values of A and «. If a second
pair (A, x2) be also harmonic to the same pair (A, «x), then
must hold the second Eq.,

IAK — A F &+ Ao+ Ko+ 2 Aoko = 0. (2)

These two Eqs. are linear in Ax and A+ «; hence they are
both satisfied by one, and only one, pair of real values of Ak
and A 4 «; this pair will yield one, and only one. pair of values
of A and x, which may be real or imaginary ; hence,

In any pencil there is always one, and only one, pair of rays,
reul or imaginary, harmonic to each of two given pwirs.

47. If, now, there be a third pair (A, x;) harmonic to the
saine pair (A, « ), then must hold the third Eq.,

2Ak — A+ K+ Ay kg + 2 Agrg= 0. (3)
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These three Eqs., (1), (2), (3), will be fulfilled by the same
pair of values (A, «) when, and only when,
1 M+x Ak =0,

1 Asdre Aoxp
L A+t x3 Agkg

which is therefore the Eq. of condition declaring that the three
pairs of rays, L'—A\L'=0, L'—xL'=0; L'—M\L"=0,
L'—w;'"=0; L'—ML'=0, L'—xL'=0, bhave a com-
mon harmonie pair.

Three or more pairs of rays harmonic each to the same pair
form an Involution. The common harmonic we may call focal
rays. Any transversal is cut by an involution of roys in an
involution of points, whose foci are the section-points of the
Jocal rays.

Pairs of conjugate points correspond to pairs of conjugate
ravs. The foci and a pair of conjugate points form an har-
monie range. The mid-point between the foci is called Centre
of the Involution.

48. The product of the central distances of a pair of conjugate
points is « constant: the squared half-distance between the foci.

F C F!
P P 7

For $FPF'P'{=FP.F'P': PF'- PPF=—1; if FF'=2¢,
CP=d, CP'=d'. then (¢+4d)-(d'—¢)=—(e+d")-(d—c¢), or
dd'=¢.

If P fall on F or F', so must P'; i.e., foci are double points,
and focal rayvs are double rays. If P and P' fall on the same
side of C, d and d' are like-signed, ¢ is 4, ¢ is real, the foci
and focal rays arve real; but if / and P’ fall not on the same
side of C. d and d' are unlike-signed, ¢¢ is —, ¢ is imaginary,
the foci and focal rays are imaginary.

The foci fix the centre, and so the Involution ; but, by Art.
46, two pairs of conjugates fix the common harmonie pair; i.e.,
the focal rays resp. points ; hence, two puirs of conjuyates (rays

. resp. points) fix an Involution.
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49. If IL'=0, L"=0 be foecal rayvs, L'—\,L"=0, where
s=|1, 2,3, 4|, any four rays, then their conjugates are
L'+ AML"=0 (Art. 43), and the CRs. of the two sets are
plainly equal ; hence,

In any Involution the CRs. of any four elements and of their
conjugates are equal.

Cor. Ifsix points (or rays), 4, A', B, B', C, ', be in invo-
lution, then

$ABCA'} =3A'B'C" 44,
which tests whether the third pair be involved with the other two.

Cross Ratio and Involution are of greatest import to Higher
Geometry and Mechanics. Minuter treatment were out of place
in this elementary work ; but the foregoing, it is hoped, may
excite the reader’s interest, and inecite him to further pursunit of
the subject. A single illustration is added in the proof of the
familiar theoren: :

Each diagonal of a four-side is cut harmonically by the other
two.

Be AB, AC', A'B, A'C' the sides, AA', BB', CC'. the
diagonals. Then
$CDC'D'} = ACDC'D'}=§CI'B'4'}
= D{CI'B'A'}=$C"'TBA"
= A§C'IBA'{=§C'DCD'}
=1:3CDC'D'}; . 3CDO'D'i=+1.
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But a CR. ean =1 only when two rays fall together; hence,
Q.e.D. Conduct the proof for the other diagonals.

Equations of Higher Degree representing Several
Right Lines.

50. If L,=0, L,=0, ---, L, =0 be Eqs. of » RLs., their
product L;-L,--- L,=0 will be of nth degree in 2 and ¥,
and will be satisfied by all and only such pairs of values of x
and ¥ as reduce some factor, as L, to 0; i.e., the Eq.
LyL;--- L,=0 will picture all and only such points as lie on
the Rls. Iy, =0, L.o=10, +ee, L, ,=0.

If all the Z’s be homogeneous in & and ¥, so will be their
produet, and not otherwise ; but then all the RLs. go through
the origin; .".n R Ls. through the origin are pictured by an Eq.
of nth degree, and homogeneous in x and .

Conversely, such an Eq. pictures n RLs. through the origin.
For, on division by 2", the Eq. takes the form

cﬂ+c1-§’;— + ¢, ;_"_21--{- e *E"' s g fT"=n‘

This Eq. of nth degree in the ratio y: & has » roots, 8, 8,. 83,
.oy 8., and may be written

y Y Y (¥ ) %
St e S A

This Eq. is satisfied when, and only when, a factor equals 0:

3
as é — 8, =0, or y=s,2. DBut this is the Eq. of a RL. through
the origin, and there are n such factors.

The RLs. are real or imaginary, separate or coincident,
according as the roots, the s’s, are real or imaginary, unequal
or equal.

51. If the Eq. be not homogeneous in x and y, we may test
whether it be resoluble into factors of first degree in x and y
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by assuming such a resolution, forming the product of the
assumed factors, and equating coeflicients of like terms in 2 and
y in the assumed and given expressions. For an Eq. of nth

% —1 ps. of condition among

degree there must then hold

its coefficients. Our immediate concern is only with the Eq. of
second degree, which may be written thus :

ke + 20hay + gy + 292+ 2+ ¢ = 0. (1)

Instead of the tedious general method we may employ the
following, especially as its incidental results are useful :

Pass to || axes through the section-point (a,,,) of the two
RLs. which the above Eq. is supposed to represent. This is
done by putting x + x, for , ¥ + 3 for »; on collection there
results

ke +2hay +jy° + 29'v + 2f'y + '=0, (2)
where  g'=kai+hp+g,  S=ha i+,
' =k + 2hayn +gin’ + 292, + 20+ c.

This result is got by reasoning thus: terms not containing z,
or y, are found by supposing =0, 7 =0, which gives the
original expression ; terms not containing @ or y, by supposing
@ =0, ¥y =0, which gives the original expression with a,, y, writ-
ten for x, ¥ ; terms containing a subscribed and an unsubscribed
letter can result only from the original terms of second degree,
appear cdoubly, and are symmetric as to the subscribed and
unsubscribed letters. This reasoning gives the following as the
result of the substitution :

ka® 4 2hay + i + 292 + 2fy + kx® + 2 hayn+ jin+ 292,
+ 21+ 2k + 20 (@Y + 02) + 2y + e =05
and this collected gives Eq. (2). It is important that the stu-
dent thoroughly master this argument.
Now, if Eq. (1) is a pair of RLs. through (=,,%,), Eq. (2) is
a pair through the origin; hence, (2) must be homogeneous of
second degree in « and y; hence, terms of lower degree must
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vanish ; hence, ¢'=0, f'=0, ¢'=0. Butc¢' may be written

(kzy 4+ Ty + g)x + by + i+ )i+ (9o + fin+¢) =0;
and the coefficients of @, and y,, being ¢' and f', are 0 ; hence,
so is gx, 4+ fin +¢; hence, between @, and y, must consist the
three Eqs.,

kzy +hpn+9=0, hay+jn+sS=0, goi+fin+c=0.

The condition of this consistence is

This Determinant is named Discriminant of the Eq. of second
degree, and is denoted by A. Hence, A =0 is the condition
that the Evq. of second degree represent two RLs.

The co-factor of any element of A will be denoted by the cor-
responding capital letter. The Cds. (25,7,) of the section of
the RLs. may be found from any two of the above three Egs.,

and are x,=G:0, y,=F:C. 1If C, or kj —1* be Z 0,

a; and 7, are finite, the RLs. meet in finityv; if C=0, 2z, and
i, are o«c, the RLs. meet in « ; i.e., the RLs. are ||.

52. It is to note that changing the origin but not the axial
directions does not change the terms of highest, i.e., of second,

degree.
To find the direction coefficients, it suffices to factor

k2® + 2 hay + o,

or 2ty + Ee
J J
If the factors be y —sx, y— sz,
then sl+39=—233:, 3132=?;

ﬁ'— -
31_32=2w;jﬁ,

whence,



=
Ca

EQUATION OF BISECTORS.

sy=§—h+~VIE—=1j}:j,
8 =3§—h —VI*—kj}:].
Hence, by Art. 26, if the RLs. enclose an X ¢,
tan ¢ = 2V — kj-sinw: {k+j—2h cos w},
or tan ¢ =2V —kj: {k+j} ;
the RLs. are L when
k+j—2hcosw=0, orwhen k+4j=0, if w=290°

and are imaginary when 7A* — kj < 0.
53. 7o find the pair of RLs. halving the Xs between the pair
ke +2hay+jy*=0, or y—s,2=0 and y— s,z =0.

Brought to the N.F., these Eqs. are

y—sx: V1+3i=0, y— st V14 82=0.

Their sum resp. difference is the Eq. of the outer resp. inner
bisector ; and the product of these is

y—31m2:1+31‘3—y-—32:.::2: 148 =0,

or S — 8 Y — 288, — 18— sy —3° —57- 2= 0.

Divide by s, — s.. replace s, + s,, 8,8, out of Art. 52 ; whence,

]
j —

¥+ ; J ay —x* =0, the Eq. sought.
L
Note that this pair of halvers are always real, though the pair

ka? + 2 hay 4 jy° = 0, whose Xs they halve, may be imaginary.

54. The general Eq. of second degree is nof h:mogeneous in
z and y; we may make it so by multiplying the terms of lower
degree by fit powers of some linear function of # and y. So
we get
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kx4 2hay +jif + 292+ 2fy +¢=0, (A)
lx 4+ my =1, (B)
kz* + 2hxy + i + (292 + 2fy) (lx + my)

+ c(lx 4+ my)*=0. (C)

By Art. 50, (C) represents two RLs. through the origin, and
by Art. 30, they go through the intersections of (A) and (B).

Note the method of this article, as it solves the problem of
finding the Eq. of the RLs. through the origin and the section-
points of a RL. with a curve of any degree.

EXERCISES.
1. What RLs. are pictured by the Eqs.:
(a) x—c.x—d=20; (f) 442 —16xy —422=0;
(b) xy =0; (g) ¥¥*+13xy — 102> =0;
(c) 2 —4y*=0; (h) y* —2xy + 32> =0;
(d) 22—y = 0; (i) 2 —2xysec 84 21=0;

(e) 22 —Bxy 4 45> =0; (j) 2?4+ 72y -6+ Tx+31y—18=07
2. Find the Xs of the above pairs, and their bisectors.

3. For what values of A do these Eqs. picture RLs. :
(a) 1222 — 10xy 1+ 22+ 112 —6y+ A =0;
(b) 1222 4+ axy + 242+ 11 =6y 4+2=0;
(e) 1222 4 36xy + 2+ 64+ 6y +3=07
4. Show that the RLs. joining the origin to the section-points of
3224 6xry—~39*4+2r438y=0 and Sr=2y+1 are L.
5. N, =0, N,=0, N;=0 being sides of a A, find the RLs.:
N+ N+ N;=0; N,—N,+ N;=0;
N+ N, —-N;=0; — N+ N+ N,=0.

Rectilinear Loei.

55. The sum total of positions to which a point is astricted by
some geometric condition is called the locus of the point.
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To express the condition through constants and the current
Cds. of the point is to find the Eq. of the locus.

For doing this no fixed rule can be given; each problem or
class of problems must be solved for itself.

In general, the expressions will be made more simple by
choosing the axes with special reference to the figure of the
problem, but more symmetric by avoiding such reference ;
sometimes the one advantage, sometimes the other, will out-
weigh. Often the point is fixed as the junction of pairs of
corresponding lines in two systems of lines; the common par-
ameter of the two systems must then be eliminated. Thus, if
the point lic on the curve F(x,7;p)=0, and also on the
curve (@, y;p)=0, by giving p any value we may find a
pair of values of x and y satisfying both Eqs.; i.e., we may
find one position of the point; but by eliminating p we find a
relation between every pair («,y) which satisfies the two Egs.,
whatever p may be; i.e., we find a relation between the Cds.
of the point in any position; i.e., we find the Eq. of its locus.
There may be more than one parameter; the number of
Eqs. needed is, in general, one greater than the number of
parameters.

EXERCISES.

1. A point moves so that the sum of its distances from the sides of an
X is constant; what is the point’s path ?
If le+my+n =0, Lr+ my+n,=0 be the sides of the 2}{, then
hrtmydmy  hxtmy o o the locus, a RL.
VI 4 m? VIE 4 m,?*

The sides being axes, at once r+ y=s:s8inw. Draw the RL.

2. The sum of a point’s distances from n RLs. is s; find its path.
3. The ratio of a point’s distances from two RLs. is g, : g, ; find its path.

4. From side to side of a given RL. are drawn |l tracts; a point cuts
them all in a fixed ratio; find its path.

5. The ends of the hypotenuse of a right A move on the rectang. Cd.
axes ; where does the vertex move ?
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x=1.cos (60° —a)=bcos (60°—a):

=b(l+V3.tana):2 (tana—s);

6. Given one R. ;5; fixed,
another turning about a fixed
point F'; find the locus of 12
cutting the junction-line of
the sections of fixed and
moving sides, in the ratio
B+ fge

Hixt. Take the fixed
sides as axes, express OA
resp. OB through x resp. v,
and project on OF.

7. Tracts are drawn from
the origin to any point of a
RL.,, y=szx+4&; find the
locus of the vertices of equi-
lateral /s constructed on the
tracts.

Take the slope a of a
tract to the X-axis as par-
ameter, and proceed thus:

y'=h:(1l —scota),
t =y 8ina
=0b:(sina—sco8a);
(sina — s c08 a)

y:x=—tan(60°—a) = (tana— v’?T] 2 {1 V{E.tana];

Stana= (zV3 + y): (x —yV3);
whence (y+ sV3)+ » (V3 —s) =21,
a RL. sloped 60° to the given RL. Draw it.

¥

8. Find the locus of the
intersection of L1s to the
sides of a A, cutting the sides
at points equidistant from
the ends of the base.

Take the base as X-axis,
either end as origin; the
Eqgs. of the sides are y = sz,
y=sr+b; take the dis-
tance d as parameter; the
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1 1
Eqs. of the Lsare y= — —r+e, y=——x+cy; expresse, e, through
- I L :J

d, so we find the Ls are sy+x=dV1 + 3} s,‘y+1:+;: - d V1 4 .-Lf_.
IHenee eliminate o. 1

9. Find the locus of the intersection of Ls to the sides of a A through
the points where they caut |l to the base.

10. On the sides of a given X are laid off from its vertex tracts whose
sum is s; s to the sides through the ends of the tracts meet at P.
Where is 7

11. Given a vertex, the directions of the sides, and the sum of the
sides, of a parallelogram ; find the locus of the opposite vertex.

12. Find the locus of the intersection of RLs. joining crosswise the
points where pairs of rays through
a fixed point cut the sides of a
fixed .

If the axial intercepts of the
rays be a,, b,, a,, b,, the cross lines
are

T3 - SR

u, b, ; y by :
if (x, ¥} be the fixed point,

o -+ h =1 ud| +'ij—l =1.

s i |
ay by iy by

Form the difference of the first, and also of the second, pair of Eqs. ; their

; : x ) o a
quotient gives _ — _ " the locus sought, which is seen to be the same

) T
for all pﬂsiti{me‘.fnf B, clm the RL. OP,.

In the following problems, about a A ABC, take .1B as the
+ X-axis of rectang. Cds.

Five noteworthy points of a A are: mass-centre (intersection
of medials), orthocentre (intersection of altitudes), centre of
vertices (or of circumseribed circle), centre of sides (or of
inscribed circle), infersection of transversals from vertices to
contact-points of opposite escribed circles.

13. Find the loci of these points for similar & with a fixed ¥ 4. If r

be the radius of the circumseribed circle, the sides of the A are 2r.sin A,
2r.sin B, 2r.sin C; the Cds. of the points {in order) are:
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x = 2r (sin 1 cos B+ 2cos A4 sin B), y = jrsin A.sin B;

r=2rcos Asin B, y=2rcosAcos B;

r=rsin.d+ B, y=—rcos A I3;

r=4rcos:t.sinZ. cos 4 B, yf-—-*lrsiné.sinﬁ. ms‘[+ﬂ;
2 2 2 2 2 2

— b}
it I

= 2r (sin A — sin B + cos A .sin B), y:ﬂrsin‘%-sin-lj.

Eliminate the parameter r from each pair; it is seen that as the A
swells, the five points move out on five RLs. through the centre of
similitude.

14. Find locus of centre of sides, only A and its counter-side a constant.

15. Find locus of orthocentre, only P and b constant.

16. Find loci of first, second, third, fifth points, only B and  constant.

17. Find loci of the first four points, only A and & constant.

18. Find loci of the first four points, only A and ¢ constant.

19. Find loci of third and fourth points, only € and b constant.

20. Find locus of mass-centre when ¢ is constant in size and position,
while € moves on the RL. y=sr 4 n.

21. Given an X of a A and the sum of the including sides; find locus
of P cutting third side in a fixed ratio.

In problems about tracts of changing length and direction.
measured from a fixed point, polar Cds. are recommended.

r 22. Chords through a fixed

point of a circle are produced
till the rectangle of chord and
chord produced is constant;
find locus of end of produced
chord. Take the diameter
through the fixed point as
P polar axis; then OP =p, OC
=dcos8, OC.OP=L*; peos@
-1 =%%:d, a RL,, as is also clear
from similar A,

23. Two tracts whose
) lengths are in a fixed ratio
enclose a fixed X ata fixed
point, and the end of one
moves on a RI..; how moves
the end of the other?
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Take as polar axis the L from the fixed point on the fixed RL.; be OA
and OP the tracts, and OP:0A=r. Then p=rpscc(8—a), a RL.
Drraw it. ’

24. From a fixed point O is drawn a ray cutting two fixed RLs. at A
and «A', and on it P is taken
so that O is the harmonic
mean of O and OA’; find
locus of P,

0.X heing taken as polar
axis, the Eqgs. of the fixed
RLs. DA and DA are

1:p=1cos8 + msing,
l:p="cos@+ m'sine:

these Eqs. hold for the same
@ where p is 0. resp. (A" in
the first resp. second. By hypothesis, 2: 0P =1: 04 4 1: O.A’. Writing
p for OF, we get 2:p={(l+{)cos8+ (m+m')sing, the Eq.of a RL.
through 0.

25. Generalize Ex. 24 by taking 2 instead of 2 RLs. through D.

26. Given base and difference of sides of a /A : at cither end of base is
drawn a L to the conterminous side; find locus of its intersection with the
inner halver of the vertieal angle.

Families of Right Lines through a Point.

56. Thus far in each problem have been two conditions,
enabling us to determine the two parameters in the general Eq.
of a RL. Ilad there been but one condition in the problem,
the result would have contained one parameter undetermined,
and so would bave represented a family of RLs. Should a
parameter appear in a result linearly, then, by Art. 29, all RLs.
of the family would pass through a point. When the parame-
ters appear linearly, both in the general Eq. of a RL. and in
some Eq. of cendition, all RLs. of the family go through a
point; for, by help of the Eq. of condition, we may eliminate
one paramceter and leave the other appearing linearly.

Such is the case, e.g., when the parameters are the current
Cds. 2', %' of a RL.; for then they fulfil some linear condition,
la'+my'+n=0.
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EXERCISES.

1. The vertical X and the sum of the reciprocals of its sides are given
ina .. find the Eq. of the base.

Take the sides as axes; then, the reciprocals of intercepts of the base
on the axes being / and m, the Eq. of the base is Ir4+my=1; also,
I+ m=-¢. Hence the base turns about a fixed point. Find the point.:

2. If, as the vertices of a A move on three fixed RLs. through a point,
two sides turn about fixed points, the third turns about a fixed point.

Take two of the fixed RLs., as 0.1, OB, for axvs; then y=sz is the
third RL. OC. Be (xy, %), (T2 7,), the fixed points, (z', ') the third vertex
C'; then y'=sz’, and the Eqs. of AC and BC are

(mp—2")y— (i —sx")x + 2 (4, —s2,) =0,
(zg— )y — (y,—s') x + ' (y, — sx,) = 0.

Hence, find OA, OB, and form the Eq. of the third side 4B,

z (Yp—s7) : (Jy—s2) —y 1y — &) : (i — 1)) = 2.

The parameter 2’ enters this Eq. linearly; hence A B turns about a
a point. Find the point as the intersection of two base RLs. by solving
the Eq. as to 2.

3. All RLs., the sum of proper multiples of the distances of n fixed
peints from any one of which equals 0, form a family through a point (the
centre of proportional distances of the points).

Be (xx, ix) one of the points, u; the proper multiplier, xcosa+ ysina
—p =0 one of the RLs. Then, by hypothesis,

=n =n . k=n
ST cosa+ S m iy smu—pzp,tzﬂ.
=1 =1 =1

Between this Eq. and the Eq. of the RL. eliminate p; on division by
cos a (which, and sin a, may be written before the summation sign 2) tana
appears, as parameter in the result, linearly. By proceeding as directed in
Ex. 2, the fixed point is found to be

(Zpaxe: Zpa, Zpale: =p).
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CHAPTER IIL
THE CIRCLE.

Jefore treating the general Eq. of' second degree, it may be
well to treat a special case of great importance.

57. By Art. 15, if # be the distance between (z, ) and
(1, 1), then
PrTRPS o W 3;,9 42— u ey — - COSw =1, (1"

Iold » and (&, ;) fast, letting (2, ) vary; (@,y) will keep
r distant from (2, ,) ; the sum total
of its positions is called a Cirele, with
radius », centre (a.7,). Ience (I') X,y
is the rectilinear Eq. of a circle.

For o= 90° the important rectang.
Eeq. is

e 2 e a
z—w +y—yp=r. (D)
For #,=0, =0, i.e., for the
central Eq., the simpler forms are

@ 4 9y + 22y cos w =17, (I1%)
and a® + o =12 (1I)

58. A circle is known completely when are known its radius
(in length) and its eentre (in position). Since in (I') resp.
(1) radius and centre are expressed generally, it is clear that
(I'y resp. (I) is a general form to which any Eq. in oblique
resp. rectang. Cds. of any cirele may be brought.  We note
that the coeflicients of a” and #° are equal: each =1, and the
cocflicient of ay is 2 cosw resp. 0. Divided by k the general
I2q. of second degree takes the form
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I j 2 q f e !
42— 4 2L 424 4 - =0, 111
razmtiytas 2+ (111%)
Accordingly, if this be the Eq. of « circle, then must j: k=1
or j=k, and A:k=cosw or h=1F%kcosow.

These, then, are conditions necessary that the Eq. of second
degree picture a circle. They are also sufficient, for where they
are fulfilled, the three arbitraries z,, #,, 7, may be so chosen as
to satisfy any set of values of the three coeflicients,

2g 2f ¢

' Ok Ok

Two problems may now be solved :
1. Given centre and radius, to form the Eq. of the circle.

Substitute in (1') resp. (1), and reduce.

2. Given the Eq. of the circle, to find centre and radius.

Divide the Eq. by the coefficient of 2°, equate the coeflicients
of  and ¥, and the absolute term, to their correspondents in (I')
resp. (1), and so find xy, ¥, 7.

EXERCISES.
1. The centre of a circle is (3, —4), radius 6 ; find its Eq.

2. Find the Eqgs. of the circles whose centres and radii are (0,0), 9;
(7,0), 3; (0,—2),11; (—4,17), 1.
3. Can these Eqs. picture circles, and of what radii and centres :
1522 4+ 157 + 162y — Wy — 45 =0;
S —3xy+345—=924+12y-10=07

4. Find centres and radii of Tx*—Ty* 4+ 49r +84y+14=0 and
6+ o6y + 26— 16y+20=0.

59. As is clear on comparing (I') and (III'), the generul
Lgs. for determining 2, ¥,, r, are
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T+ Y,c080=—g:k,
h+x,co80=—y 1k,
i+t 20080 —1r=c: k;
or, for rectang. axes, more simply,
n=—u:k,
h=—J:k,
it yt—r~=c: k;
cor =g+ — ke) 1 KA
The equivalent forms, in which the coefficient of 24 9* is 1,
x—al4y—yi—12=0,
or P4 2024 2fy Fe=0, (I1I)
may be called the Normal Form (N.F.) of the rectang. Eq.

In the N.I'. #,=—¢g, n=—Jf, P=g+f—c; i.e., the
Clds. of the centre of « cirele are the negative half-coefficients of @
cenel y in the N.F. of its rectang. Eq.; the squared radius is the
sum of their squares less the absolute term.

The circle is a real, a point-, or an imaginary, circle, accord-
ing as

G+ fP—kec>0, or =0, or <0.

The Cds. of the centre do not contain the absolute term;
hence, if this alone change, the centre does not change; i.e.,
cireles whose Egs. differ only in absolute terms are concentric.

If the absolute term be 0, the curve goes through the origin.

60. The Eq. of a cirele contains three arbitraries, a, o, r, or
¢, [y .  Hence, three conditions are needed and enough to fix
n cirele.  To find a circle fixed by three conditions, express
these through Kqs. and thenee find the arbitraries. Thus,
find the circle through the points (1, 2), (3, —35), (—2,1).
Since each Cd. pair satisfies the general Eq.

1+ 2gr+ 2fy +ec=0,
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we get 29+4f+c+35=0,
6g— 10+ ¢+ 34 =0,
—494+2f+¢+5=0;
whence, finding 7, f, ¢, and substituting, we get
23(* +y*)— 292 487y — 520=10.
Or, by Determinants, more neatly, thus: If the circle
@+ +29x42fy+c=0
goes through (5. 1), (%2 ¥2), (23, %), then
22+ 92+ 292, + 2y + 0 =0

for k=1, 2, 3. These four Eqs. consist for the same values
of g, f, ¢ when, and only when,

a4 x oy
Wk ufi

ay + L% Wy

24y X e
] o

Yoy Xz Yy

=0,

T —

which is therefore the Eq. sought. Clearly, it is also the con-
dition that four points, P, P,, P,, P;, lie on a circle.

EXERCISES.
1. Find the circles through (0,0), (a,0), (0,5); (a,0), (—a, 0}, (0, }).

2. If (x,,5,) (r,, ¥,) be ends of a diameter, the Eq. of the circle is

rT—xx—x+y—thy—y,=0,
or, for obligue axes,

T—xprrx—x,ty—yry—ptir—a - y—y,+x—z,- y—ytcosw=0.
N.B. The following familiar propositions in the Theory of
the Quadratic Eguation are here recalled once for all :

Be C,2°+2C 2+ C,=0 the general Eq. of second degrec
in x, v, and 7, its roots ; then
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(‘I) T;‘-I-Tg:*—ﬂol: Cg, o= Ou: ng-

(2) For C;,=0, oneroot=0; for C,=0 and C;= 0, both
roots = 0.

(3) For C,=0, one root=0w ; for (4,=0 and C;=0, both
roots = «.

(4) For ¢, =0, ry=—1,; i.e., the roots are equal, but
unlike-signed.
(5) For (= C,C,, the roots are equal and like-signed.

61. To find where the axes cut a curve of second degree,
equate y resp. « to 0 in the general Eq. ; so we get

ka4 292 +c¢c=0 resp. jr+2fy+c=0.
The roots of these Eqs. are the intercepts on the X- resp.
Y-axis. (They are equal, i.e., the X- resp. ¥Y-axis meets the

curve in two consecutive points, i.e., is tangent to the curve
when, and only when, ¢*=ke resp. fPf=ke. See Art. 64.)

Conversely, given the intercepts on the axes, to find the Eq.
of the circle. Suppose k=j=1, and be a;, ¢, resp. by, b,
the intercepts on the X- resp. ¥-axis; then

29 =—(u+ay),
2f=—(bhi+0),
¢ = 0y iy = by bs.
Let the student interpret these Eqs. geometrically.
Hence, 2* 49 — (a4 )@+ 21y + vya, =0,
* 4y + 292 — (b + b))y + b b, =0,
resp. & 4y — (o, + ax)e— (b + o)y + L (e ao+ 5 0,) =0

are equations of a circle in terms of its intercepts: on the
X-axis, on the Y-axis, resp. on both axes.

N.B. Of course, only three intercepts can be assumed ot
will ; then the fourth follows from «,a, = b,b..
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EXERCISES.
Where do the axes cut z* + y* 4+ 62—y —6=107?

A circle touches each axis @ from the origin ; find it.

9 N -

Find the equation of a circle through (0,2), (0, —4), (5,0).

4. Find the equation of a circle referred to a tangent, and a chord
through the point of touch.
We have ay=b=b=0, a,=+2rsinw; '
hence, 4+ P+ 2rycosws 2rrsine =0.
If the chord be a diameter, « = 9%0°; hence the important form
24+ y:2rr=0.

Verify geometricall ¥ and explain the double sign.

Polar HEquation of the Circle.

62. Be d the tract from the pole to the centre, « its inclina-
tion to the polar axis OD, r the radius.

Then the equation sought is
p—2dp cos(0 —a) + d&* =17

The product of the two roots, p, = OP,, p, = OP,, is con-
stant, and = d* — #°, a familiar theorem.

The Circle in Relation to the Right Line.

63. By Art. 16, a line of first degree (a RL.) cuts a line of
second degree (as a circle) in two, and only two, points.
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CIECLE AXND RIIGHT LINE.

For, in the equation of second degree, put for y (say) its
value sz + b (say) taken from the equation of first degree; so
we get an equation of second degree in 3 its two roots are the
a's of the two points common to the two lines.

If w=(mn—gylm + fF) : (F+m?),
and v =/} (mn—glm+fE)*+ (2gln—Fe—n®) (E4+m?) |
: (P+m®)
and (w, ) be the common points of the RL. and the circle
lz4+my+n=10, FH+y¥*+2g2+42y+c=0,

the student may find (lower index going with lower sign)

m=—T 47 (eE0),  p=—(utw),

but he will not find any pleasure withal. To shun such labo-
rious reckonings and such unmanageable formulas, we have
recourse to special forms of the equations.

Thus, the RL. y=sx+ 0 meets the circle 2’4 y* =7* in
2, ={—sb £ Vi (1+) — 0 : {145
=10 £ V(L4 5) — b : {14

The RL. 2z cosa-+ ¥ sina=p meets the circle #*+ y*=1" in

(A)

%y, =p Ccosa + sid “er .

h,=p sina F cosaVi' —p

These pairs are real and different, or equal, or imaginary;
i.c., the common points are reul and separate, or consecutive, or
imaginary, according as

in (A), »#(145)—0"is >0, or =0, or <0;
in (B), »-—p* is >0, or =0, or <0.

64. Real and separate points present no difficulty ; imaginary
points have no existence in our plane, and are to be treated
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further on ; but consecutive points it is essential to his progress
that the student understand clearly now and here.
Coincident points fall together, have exactly the same posi-
tion, and are distinct only in thought. Thus, we may think of
the intersection of two lines L, L' as
L made up of two points fallen together,
and we may call it /> or P’ according as we
think it belonging to L or to L'. Consec-
utive points become coincident and in a
particular way : by nearing each other on
the same definite path (curve). Thus, if ¢ be any curve, £? and
P, any two points on it, we may think P as fixed and P, as
taken at will nearer and nearer P?; or, what comes to the same,
we may think I’} as moving nearer and nearer to I° along C.
Be L a RL. through P” and /’. As P’ nears P, L turns about
P, and the position of L is fixed completely by . As P falls
on P, L turns into some position I Now P and 7, thought
simply as coincident, cannot fix a
RL.: for they form but one point,
and through this ore point a RL.
may be drawn in any direction.
But I” and P, thought as conseccu-
tive points (of C say), do fix the
position of L; for, as consecutive
points of €. they become coincident
by nearing each other along C.
At everv stage of this becoming-
eotncident, L turns into a definite position, as /; nears P; and
at the end of it, the being-coincident, as P, falls on P, it is left
turned into a definite position 7. It is specially to note that
the being-coincident of P and P, has no power to fix the posi-
tion of L ; it is only the particular way of their becoming coinci-
dent that fixes it. As P\ becomes coincident with 7> (or /)
in some other way : by nearing it along some other curve ',
the RL. L' turns into some other position 7.
Looking at the algebraic side of the matter, we find the

}l‘
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likeness perfect. The two pairs of common roots (z,7,),
(x4, .) of the two Eqs. y=sx+4+0b, a4 y*=7", areequal
if »~“=0:(14%); but not simply are they equal; they
become equal in a particular way: not by & and s passing at
random through any one of an infinite number of series of pairs
of values up to that pair which makes »*=10°:(145"), but
by their passing through that particular series each one of
whose pairs satisfies the two conditions, y,=sr+5 and
x’ 427 =1. 'The whole scries of pairs of values of s and
being fixed, the last pair, which makes #*=10": (145%), is
fixed; i.c., the last position of the RL. y=sx+4 b through
the consecutive points (2,9,), (@, ) of 2* 4+ =% is fixed.
Again, we see it is not the fact of being coincident, but the way
of becoming coincident, which is significant. We further see
that the concepts, coincident points and consecutive points, are
not in themselves complete ; we think, though we do not always
say: two coincident points of two curves; two consecutive
points of one curve.

65. In the light of the above, we may now define a fangent
to a curve as a RL. through tivo consecutive points of the curve.
Where the points fall together is called point of touch, contact,
tangency. If for **RL.” we put ‘‘curve,” the definition still
holds. We also see that the algebraic condition that a RL. and
a curve (or two eurves) he tangent is, that two pairs of common
roots of their Eqs. be equal.

Henee, if y=szx+>d touch 2+ =+, V=1 (1+435";
or, _

The RL. y=sx+DbVv1i
for all real values of s.

This so-called magie equation of the tangent determines it by
its direction (5), not by its point of touch, and is useful in
problems not involving this point.

So, too, if xcosa+ysina=p touch &4 y*=1, =p’.
Hence, the Cds. of the point of touch are

¥ =1recosa, ¥ =7sina.
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Substituting for cosa, sina, p in xcosatysina=p, we
get

The RL. ax,+yy,=17r> touches the circle x*+y*=7r> at
the point (2.1,) of the circle.

This equation determines the tangent by its contact-point
(z1,71), and is useful in problems involving that point.

66. The doctrine of Chords is so of a piece for all curves of
second degree, that it is deemed best to state it here at once in
full generality.

We know how to find the intersections of a given RL. with
a given curve; the converse would be to find the RL. through
qiven intersections with the curve. The general method is this :

Combine the general Eq. of a RL. through two points with
two Eqs. which say the given points lie on the given curve ; the
result will be the Eq. sought.

This tedious general method we may replace by special
methods in special cases. Such is the following method of

Burnside for the curve of second degree :

Form an Eq. whose terms of degree higher than the first shall
cancel (hence, it will picture a RL.), and which shall be satisfied
by the Cds. of the points (xy,1,), (2o ), only when these points
lie on the curve.

Such an Eq. formed after this prescription is

ka? + 2hxy + jy° + 292+ 2fy + ¢
= k(x—a) (2—22) +2h(z—2,) (Y—22) +7 (=) (Y —22)-
This, therefore, is the Eq. of a secant through (z,,%,), (2, #.)

of the curve of second degree. The condition that this secant
become a tangent is, that (z,%,), (%:2.) fall together.

ket 4 2hay + o + 292+ 2y +c
=k(z—2)° 4+ 2h(x—2) (y — )+ 7 (¥ —m)*%
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or, after expanding, cancelling, transposing, remembering that

ke + 2k + jyr’ + 292+ 2fin+¢ =0,
finally,

kayx 4k (2 )+ 2) + jny+9(@+2) +(n+y) +e=0 (D)
is the Eq. of @ RL. tangent at (x,,7,) (o

Kz 4k (xy+y2) +iyy+g (2 +2) +7(y+y) +¢ = 0. (D)

The Eq. of second degreé being written thus, the Cds. appear
in pairs, and we get the Eq. of the tangent by substituting for
the first current Cd. in each pair the corresponding Cd. of the
point of touch.

These general Eqs. of secant and tangent include all special
cases, and are here deduced once for all.

EXERCISE.

Form by these methods, then simplify, the Eqs. of chords and tangents
of the curves

ry=¢? yr=4dpxr, 2+ yi=1rt; (r—a)’+ (y—=0)2=1r

67. Firom any point (2', y') may be drawn two, and only two,
fangents to a curve of second deqgree,

For, write F(x,y;2,9)=0 for Eq. (D) of Art. 66; then
the IZq. (D') of the tangent is F(x;,7,; ,%)=0; and clearly
F(xyopy; e.n)=F(x,y; 2, ). If the tangent at (=, 7,) go
through (a',%"), then F(x,y;2',%')=0; and, since (z,,7,)
is on the curve, F(x, 3 2;.1,) =0. In the first of these Eqs.
@y, Yy, @', y' all appear linearly; solving as to y (say), we get
¥, = an expression linear in @, z'. Substituting this in
F(axy, 5 @, ) =0, which is of second degree in a; and y,, we
get an expression of second degree in ;. Solving this, we get
two values of z,, to each of which, since F(x, ;2.9 )=0
is linear in ay, ¥, corresponds one, and only one, value of #;;
hence, there are two, and only two, pairs of values (z,, ;) ; i.e.,
two, and only two, points of tangency.
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Of course these pairs may be real and unequal, or equal, or
imaginary ; accordingly, the tangents will be real and separate,
or coincident, or imaginary. 'The second ecase, of coincidence,
arises when the point (', ¥") is on the curve; for, since the Eq.
of a tangent through a point of the curve has been found uni-
versally (see Art. 66), there is but one such tangent, which
may, however, be thought as two fallen together. To tell when
they are real, when imaginary, we may reason thus :

68. Any curve, F(x,y)=0, bounds off «ll points of the
plane  for which F(x,y)<0 from all points for which
F(x,y)>0.

i

/ y=u )

!

For, assign y any value, say ;; then, as x varies, F(x,¥)
will become 0 only where the RL. »=j, cuts the cuarve
F(x.y)=0; but, as, and only as, x passes through a root z, of
F(x,1)=0, F(z,y,) changes sign. We may call the sides
of the curve plus resp. minus.

In the Eqs. of the curve and the tangent, (D) and (D'), let
us replace 1 by v resp. v;, so as to make them homogeneous in
2, Y, &1y Y1y ¥y ¥, They then take the forms

kzx + h(xy + yx) + jyy + g(xv + vr)

+ (v +vy) +cvv =0, (E)
kxyx + k(x4 nx) 4 jny + g(av + v x)

+S(nv + v y) + v v =0. (E")
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If, now, we proceed as sketched in Art. 67 to find @, we
shall get a result of the form

..A:-;':] + Bf'l == i -\/“{I
where A, B, €' are functions of &', ', «', k, &, j, 4, f, c.

_ _ (R2' by + ge) @+ (92" + 1y +cv') g0y
B (ha'+ jy'+ fo')s

we readily see that ' will be homogeneous of tenth degree in
all the arguments: of fourth degree in 2', %', 2', and of sixth
degree in k, L, j, g, f, ¢. [Consider that in replacing #, the
parentheses ( ), ( )a ( )3 will be squared, which squares will
be again squared in completing the square (in x,,7,), as will the
cocflicients k, &, etc.] Now, if (&',%') be on F(z,y; z,7)=0,
the two values of 2, are equal; but then C=0; hence,
Fi,y:2,9")=0 makes C=0; i.e., F(x,y;29") is
a factor of . Now, since a' enters F(a&',%'; 2',%") in sec-
ond degree, but enters € only in fourth degree, it follows that
F'yy'; 2', %"y cannot appear in €' in higher than second
degree. If it appear in second degree, we may extract the
second root, and write

VC=F(,y;«,y)VR.

Here I2 cannot contain z', ', or 2/, since each enters F in
second degree, and each entered C in only fourth degree ; hence
R is a function of &. 7. j, g, f, ¢ only, and that of second degree.
Hence, whether v/ C be real or imaginary will depend only on
the sign of R, that is. only on &, &, j, f, 4. ¢, not at all on a',
»'; that is, not at all on the position of the point (', %") from
which the tangents are drawn. Hence, tangents from all points
will be either all real or all imaginary. This is so for any curve
of second degree, hence for the special curve, circle. But now
we know that some tangents to the circle (from points outside
the circle) are real, while some (from points inside) are imagi-
nary. Ience. F(a'.';2'.%') cannot enter C in second
degree, but only in first degree. F(a',»'; 2',y") changes sign
at every point of the curve F{z,y;2,%)=0, and no other

Since i '
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function of z and y does. Hence, ' changes sign along the
same curve, is plus for all points (z', ') on one side, minus for
all points (2',7') on the other; hence, tangents from all points
on one side of the curve are real, from all points on the other
side are imaginary. The side on which the tangents are real,
we may call the outside ; the other, the inside.

69. The Eq. F(x, y; «,y)=0, of the tangent to
F(x,y; 2,y)=0 is symmetric as to 2 and 2, as to  and y,,
a fact of highest import to the whole theory of curves of second
degree. This import we shall now in part develop.

Thus far, the point (2, 7;) has been taken on the curve; the
query is natural, What does F(x,,9,; .7)=0 picture when
(zy, ) is not on the curve? To answer it, suppose tangents
drawn from (z;,%,) touching the curve at (a,.), (. %s).
The Eq. of one is  F(a, y,; o, y) = 0.

Since it goes through (@), F(aw y; . y)=0. But
this Eq. also says that F(x,%;a,7)=0 goes through
(3, %) ; by like reasoning, we show that it goes through

(x:’n ﬂa) ; hence,
F(x,y;x,1)=0 or F(x,y;xy)=0

is the RL. through the tangent points of tangenis from (x, )
to F(x,y;x,y)=0.

Such a RL. is named polar of the pole (z,,#,) as to
F(z,y; z,y)=0.

Since the equation of condition F(x), 1, ; 25, 7)=0 may be
read either

(ml! fh) i3 on Hw W'k‘f Gf (xi'} 3{2)1 i-E-a on F(m" U5 Mo HE') - 01
or (3, ¥2) 8 on the polar of (zy, ), i.e., on F(z, y,; z,7)=0,

if one pole be on the polar of a second, the second is on the
polar of the first: or, if one polar pass throuzh the pole of a
second, the second passes through the pole of the first.
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Two poles, each on the polar of the other, or two polars,
each through the pole of the other, are called conjugate.

Hence, if a point be on each of a system of polars, i.e., be
their intersection, the poles of each polar will be on the polar of
the point ; or, as a RL. turns around a point, its pole glides
along the polar of the point; or, as a point glides along a RL.,
its polar turns about the pole of the RL.

If we convert the definition of the polar of a point, we shall
get a definition of the pole of a RL. : as the intersection of the
tangents to F(ax,y; o, y) =0 through the intersection of the RL.
and the curve. 1If, now, this RL. turn about a point, its pole
will glide along the polar of the point; hence, the polar of a
point is the locus of the intersection of the pair of tangents to the
curve through the intersection with the curve of a RL. through
the point.

70. These two definitions of polar are equivalent. The first
viclds a geometrie construction only when the pole is outside the
curve, for only then are the tangent points real. If the point
be inside the curve, we may still draw through it two chords
of the curve, and draw the two pairs of tangents through their
ends ; the RL. through the two intersections of the tangent
pairs will then be the polar sought. When the pole falls on the
curve, the Eq. shows the polar becomes a tangent through its
pole as point of tangency. Hence, the tangent is to be thought
as a polar through its own pole.

It is carefully to note that the terms pole and polar are mean-
ingless without reference, express or implied; to a curve of
second degree, which we may call the referee.

The notions of pole and polar are still deeper inwrapped in
the notion of curve of second degree, as what follows may show.

71. Be py: po the ratio in which F(z,y; x,y)=0 cuts the
ey
tract (2, 9,) (2o, 72) ; then the Cds.

e + :‘iﬂ-f_l} _ MYt petn
My 1 pg P+ e
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of the section-point must satisfy F(x,7;x,7)=0. Substi-
tuting herein and arranging terms, we get

i F'( 20y 25 X0y o) + 2 papo F(20, Y15 2oy Y2)

+ plF (25 95 20, 1) = 0. (G)

[N.B. Reason as in Art. 51; the result must be homoge-

neous in pg; and p., and symmetric as to indices 1, 2; the

cocfficient of p,° resp. p,® we get by supposing p. resp. p, to be

0; the coefficient of p,p, must be double and symmetric as to
the indices 1, 2.]

This quadratic vields two values of the ratio p,: p., say r'

and »". If (x, ) and (2:,7.) be conjugate (each on the other’s

polar). then F(x.7; @ 2)=0, and then »'=—7"; i.e.,

the tract (&, 7)) (2 7). from pole to polar, is cut by
F(z,y; x,y)=0 innerly and outerly in like ratio; i.e., is cut
harmonically. Hence, any tract from a pole to its polar is cut
harmonically by the referee.

Hence, once again, we may define polar thus:

The locus of the harmonic conjugate to a fixed point, the other
pair being section-points with the referee of chords through the
point, is called the polar of the fixed point (as to the referee).

Thus is justified the use of conjugate in Art. 69.

IH‘

7y

If, now, there be given five points of the referee, we may
construct it with the ruler only, thus: Through P, and P;, P,
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POLAR AS LOCUS OI' A FOULTH HALRMONIC. 8

and P; draw secants meeting in 7; on them find fourth har-
monics * I, II' conjugate to I; ITH' is polar of I. Draw 1P
cutting IIH'" at II". Then is Py, the fourth harmonie to /%,
the other pair being I, II", a point of the Referee. As we may
choose four out of five in five ways, and join cach four by twos
in three ways, we may thus construct fifteen sixth-points.
Recombining these twenty. we may go on to construct any
number of points of the Referece.

72. In Eq. (G) drop the subseript ;; then the roots #/, 7"
are the ratios in which F(z,y; 2,y)=0 cuts the tract from
(x, 1) to (x,%). When these ratios are equal, the tract is cut
by the curve in two consecutive points; i.c., the RL. through
(#;. ;) and (x,y) touches the curve; but when the roots are
equal,

F (x5 @) Fayys x,y)={F(x, 105 2, 9) 3%

In this Eq. (2, y) is any point on a RL. through (2;.%,) tan-
gent to Kz, y; x,y)=0; hence, this Eq., being of second
degree in (x, ), pictures the pair of tangents through (a, ;) to
F(x,y; 2,y)=0.

The right member being a square, is always plus; hence, the
factors on the left are like-signed ;
hence all points (x,y) of a tan- /\/\
gent lie on the same side as any
one point (xy, 1) ; i.e., the tangent does not cut the curve; i.e.,
the curve is throughout convex or concave on the same side ;
not like this figure.

L L LI LRI

* This we may do by think-
ing P P, a diagonal of a
fourside cut by another di-
agonal at I. Draw SP,, SP,,
Sy draw P QR at will;
draw LD, T draw QT; it
cuts 2,17, at 17, by Art, 49.
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Thus far all geometric representation has been purposely
avoided, to show more clearly how the notions and properties
of pole and polar all lie enfolded in thie algebraic fact that in
the Eq. of the tangent to the curve of second degree current
Cds. and Cds. of the point of touch appear symmetrically.

B
L

[\
\

¥

L3

P

The figure illustrates the definitions given. Poles and polars
are marked by the letters P and L, with corresponding indices.
It is not necessary to know aught of the curve except that it is
of second degree.

We may now return to the special properties of the circle.

73. By Art. 63, the section-points of =xcosa+ysina=p
and 224+ y*=7* are

m1:=j}ﬂ05aisinu‘\u’?'=—p?,
h,=p sin a F cos aV7r — p.

The half-sums of these pairs are the Cds. of the mid-point of
the intercepted chord: z,=pcosa, ¥,=psina.

By eliminating p we get a relation holding between the Cds.
of the mid-points of all chords having the same a, i.e., all
Il chords. Hence,

Yn:Zp=1tana or y=tana-.-x
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is the locus of the mid-points of a system of || chords. Such
a locus is called a diameter, and in this case is clearly a RL.

through the centre L to the chords.

A RL. through any point (,, ) of a curve L to the tangent
at that point is named Normal to the curve at that point.

The tangent to 2°+y*=+* at (x, ) is a2z 4 yy, =1r";

hence, (c—a2)m—(—m)ae,=0, or z:y=mx:1,

is normal to the circle 2°+*=+* at (a3,%).
The absolute in this Eq. is'0; hence,

Normals to a circle pass through (envelop) a point, the centre.
Also, all normals are diameters of a circle.

74. In the expression

i€ — “._lﬂ_l_;m___?;l?m?&’ or =4y +2gx+2fy+c,

either of which equivalents equated to 0 is the N.F. of the
rectang. Eq. of the circle whose
centre is (xy, ), and radius 7, (x,7)
r—a, 4+ —y, is the squared
distance of any point (a2, %) from
the centre ; and since the radins
1s L to the tangent at its end '
(Art. 73), the difference © — 2,
+ 4 — " —7* is the squared tan-
gent-length from (x, ) to the
circle z—a, +7—y, — 1 =0.

So, too, is @* 4+ ¥° 4+ 2gx + 2fy + ¢ the squared tangent-length
from (x,y) to the circle 2*4 *+2qg2 4 2fy + ¢ =0.

This squared tangent-length is called the power of the point
(%, 7) as to the circle. To find it, replace the current Cds. in

the N.F. of the Eq. of the circle by the Cds. of the point.
Like reasoning and results hold for oblique axes. The power

of the origin (0, 0) is the absolute in the N.F. of the Eq.

75. The centre being origin, the Eq. of the circleis 2°4 2°
=7%,  however the axes be turned. Turn them till the X-axis
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passes through any assumed pole. Then is y, =0, and the

- [F] T"
polaris ax, =7 or z= =

But this is a RL. L to X-axis, distant z from origin.

Hence: (1) The circle being referee, the polar is L to the
radius through the pole; (2) the radius is the geometric mean
of the distances of pole and polar from the centre.

TN

We may now trace the movement of pole and polar thus:
When the pole P is at P, the polar L is the tangent L,; when
P falls on P,, L falls on L,; as P nears the centre, L retires
to oc ; as P passes through the centre, L passes through =;
as P nears P, L nears L,'; as P retires to s. L nears the
centre ; as I” passes through «, L passes through the centre ;
as P nears P, L nears L;. So long as P stays on a diameter,
L stays || in all positions; i.e., L turns around its point oo,
also P and L move counter. As P glides along a tangent, L
turns about the point of tangency; as P glides along any RL.,
L turns about the pole of that RL.; as P glides around any
circle concentric with the referee, radius «, L turns around a

o

- - ¥ r- < . -
second concentric cirele, radius — ; if P glide around this
i

second circle, L will turn around the first. All these are special
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cases of the general proposition: as the pole glides along
(traces) any curve of wnth degree, the polar turns around (en-
velops, enwraps) a curve of nth cluss; and conversely. Such
pairs of curves are ealled reciprocal.

N.B. A curve cut by a RL. in n points is of nth degree; a
curve touched by m RLs. through a point is of ath class.
Curves of second degree and curves of second class ave the
same ; but in general curves do not rank alike in degree and
class. See Art. 160.

EXERCISES.
1. Find tangents to a2+ 32 —6xr—14y —3 =0 at the points whose

x is .
From the Eq. of the circle we find the corresponding value of y: 12, 2.

The Eq. of the circle in the form Fx, y;x,y)=0 is zx+yy—3(z+z)
—T7(y+ y)—3=0. Hence, the tangents are
9r4+12y—3(942)—T(124y)—3=0,
O9r+ 2y—3(942)—T(2+y)-3=0;
or, reduced, 6xr+56y=114, Gx—5y =44,
2. Similarly, find the tangents thus defined :
24+ —4r+22y4+26=0, z,=3;
(r—5)2+ (y+8):=113, =x,=13.
3. Find the tangents to 224 42+ 10x—6y—~2=0 | toy=2xr—T.
The Eq. of the circle may be written (r+5)2+4+ (y—3)2=36; or, if
'=x4+bH, y'=y—3, 2*+y?*=36. The Eq. of the RL. becomers
y=22—20. A RL. || must be »' =22 +0b This is tangent to
x'2 4 y% =36 when,and only when, 36(1 +27)=102; ie., when b= 6v5.
Therefore the tangents are y'=22'+6+V5; or, y=2x+13 05,
4. Draw tangents to 22+ 32=058 inclined 60°to 4x—3 y=12.
5. Through (x;=9,»,>0) on 2?2432 —12x+4+2y+3=0 draw RLs.
inclined 45 to the circle.
Hixt. The RLs. sought halve the angles between tangent and normal.
6. Find the angle between two tangents to a circle.
7. Find the power of (—11,-9) as to (zr—3)2+ (y—"7)2=25; of
(4, 1) asto 4224+ 4y?—3x—y—T=0.
8. Find the circle tangent to y=3x—5, centre at origin.
9. Find the tangents from (10,11) to 2%+ »%=169, and where they
touch.
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10. Find and draw the polars of : (11,17) as to (x—3)2+ (y +5)2=81;
(8, —5) as to *4+ y?4+14x46y+22=0; (—2,—7) as to z%24 32
—1Bx 424+ 57 =0.

11. Find the polar of (x,, y,) as to the point (-circle) (a,d).

The Eq. of the point regarded as circle of vanishing radius is

(z—a)?+ (y—0)*=0;
.. the polar of (z;,y;) is (x;—a)(x—a)+ (y,—0)(y—1b)=0.

This RL. goes through (a,b) L to the junction-line of (x,, ¥,) and (a, b).
Show that the polar of (11,3) asto (4,—2)is Tzxz+oy—18=0.

12. Find the polar of (x,, »,) as to a RL.

Regard the RL. as circle of infinite radius, and write its Eq.

(22+ 1+ k) +2(A,+EA) x4+ 2 (B, +kB,)y+ C,+%C,=0.

For k= —1 this circle passes over into a RL.. The polar of (z,,y,) is,
for k=—1, (d,—4)(r+2)+ (B, —B,)(n+y)+ C—C,=0,
the RL. is 2(A,—A)x+2(B,—B,)y+ C;—C,=0.

Hence, the polar is || to the RL., midway between it and the pole.

Show that the polar of (8,20)asto 5xr—3y+7=0 is 5x—3y—6=0.

13. What is the pole: of y =mx + b as to 224 32 =121
of Ax4+ By+4C=0 as to (r—a)?4(y—b)2=1r21

14. Find the pole (x,, y,) conjugate to (x,, v,) as to z2+ y*=7r2 and on
the junction-line of (x;, y,) and the centre of the circle.

Since (z, y,), as conjugate to (r,,y,), lies on the polar of (z, ),
X+ Yy, =72; sinceitlieson r:y=ux:y, T :y.=7:y.

Hence, r,=rin: (52 +52%), ¥=7n:(x2+5°-

Hence, 2 =rn:(z?+ 5%, Hh=r¥(='+y)

Hence, (z,, ¥,) and (z,, y,) are called related as to 22 4 3*=r%

15. Show that each of two related points is the pole of a RL. through
the other Il to the polar of the other.

Systems of Circles.

76. Be C;=0, C;=0 Eqs. of two circles in normal
form.

Then i3 Cy,—AC,=0 the Eq. of a circle (by Art. 58)
through the common points of C,=0 and C,=0 (by
Art. 30).
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Or, C,—AC;=0 is the Eq. of a system or family of
circles through two fixed points: the section-points of C,=0
and Cy,=0; Xis the parameter of the system, and ranges
from — o to 4 .

Since €, and C, are the powers of any point as to ;=0
respectively (€, =0, and since A is clearly the ratio of
these powers, we see that

The ratio of the powers of any point on any circle of the
system as to any two circles of the system is constant. The
ratio is of course different for different circles or as to different
pairs of circles.

For A=1 the terms of second degree vanish, the circle
passes over into a RL., i.e., a circle of infinite radius. This
RL. is always real, though the section-points be imaginary.
Clearly the powers of its every point as to the two circles are
equal, since its Eq. i8 €}, — (C;=0. Hence it might bhe
named Equipotential Line or simply Power-Line of the circles
(called Radical Axis by Gaultier, 1813).

77. The power-lines of three circles taken in sets of two are
0,— C;=0, C;—C; =0, C,—Ci=0; added, these
Eqs. vanish identically; i.e., the three power-lines meet in a
point — the power-centre of the three circles.

1

Hence, to construct the power-line of two circles, C; and C,,
draw C; and C| cutting C, and C,. The power-centres of C,,
C,, C; and €y, C,, C, fix two points on the power-line of C; and
.
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78. Two points determine a RL. as common power-line of a
system of circles: C,—AC,=0, through the points. T%e
power-lines of each circle of such a system and a fixed circle C
pass through a point. For the power-line of C and any circle
(" of the system cuts the given power-line of the system say at
I; which then is the power-centre of (', (' and any second
circle C" of the system ; hence the power-line of C'and C" also

passes through I.

EXERCISES.
1. Find in co-ordinates the power-centre of (r—7)2+4 (y— 9)2= 36,
(x+3)2+(y—2)2=16, (z+4)’+ (y+ 5)*=9, and draw the figure.

2. Show that the power-line of two circles is L to the junction-line of
their centres (or centre-line, as it may be called).

79. The form C;—AC,=0 is not convenient for study-
ing a system of circles. The power-line and junction-line of
centres, being 1, naturally suggest themselves as axes. The
latter being taken for X-axis, the term in y falls away; also,
for «=0 the values of y are equal and unlike-signed for
all the circles; hence the parameter A can enter only the term
in z, and we can write the Eq. of the system,

'+ —2xx 4+ 8= 0.

Here A is the changing distance of the centre from the origin ;
8 is the fixed distance to the section-points from the origin ;
these points are real or imaginary, according as é* is — or +.

80. The Eq. of the system of polars of any point (2, 7,) as
to this system of circles is mmaz+yy—A(+2)4+8=0;
A appears in first degree only, hence this system of polars pass
through a point, the section of -maz+4yy+6*=0 and
rn+x=0

In general, then, the polar of a point changes with the circle
of the system, turning about a point ; but if the two RLs. which
fix this point, zz4+yy, +86=0, x,4+2=0, Dbe the same
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RL., then are all RLs. of the system o4y —A(2, +2)
+ 8 =0 the sume RL.

This is so when, and only when, =0, z=+34, for
otherwise the two Eqs. are not the same. Hence euclk of these
two and only these points (3, 0), (—3&, 0) has the same polar as
to all circles of the system, namely, a RL. through the other
L to the line of centres.

These points are real or imaginary according as &* is + or —,
i.e., according as the section-points of the circles are imaginary
or real. Writing the Eq. of the system thus,

¥+ (2 =)= N — &,

we see if & be 4+, and so the above critical points real, then
the circle is imaginary, for every A <<d. For A very large the
centre retires toward oo along the X-axis, the circle flattens
toward the Y-axis; as A nears 8, the centre nears the critical
point (8, 0), the circle shrinks toward and around that point;
and as A equals 8, the circle vanishes in that point. Hence the
critical points (8, 0), (— 38, 0) are themselves circles of the
system, point-circles, and are hence named by Poncelet limiting
points of the system.

81. The powers of any point of the common power-line as to
these circles, i.e., the squared tangent-lengths from any point
of the power-line to the circles, are all equal ; i.e., the ends of
all such tangent-tracts, the points of tangency, lie on a circle
with centre on the common power-line. The radii of this circle,
as tangent to the other circles, are _L to the radii of those circles;
i.e., each circle with centre a point of the power-line and squared
radins the power of that point cuts orthogonally the whole system
of circles.

As the limiting points are circles of the system, each orthogo-
nal circle passes through the limiting points. Hence the Eq. of
the system of orthogonal circles is

P4y =2y —=0="+ (y— 1) =N =
Deduce this directly as the Eq. of the orthogonal system.
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Note that these two mutually orthogonal systems are comple-
mentary : in the one & is 4. in the other — ; the power-line of
one is the centre-line of the other; the section-points of one
are the limiting points of the other; of the one the section-
points are imaginary, the limiting points real, — of the other,
vice versa.

To construct this double system. Draw any number of cir-
cles through two points. To any one draw any number of
tangents. About the points where these cut the RL. of the
two fixed points describe circles with the tangent-tracts as
radii. Do not fail to carry out this construction.

EXERCISES.

1. Whenare C=0 and C,=0 17
The squared distance between their centres must equal the sum of

their squared radii; i.e.,
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(=92 + (f=A)P=F+ P —c+ g2+ /iP—0y
or, 290+ 2/, —¢c—e, =0. (A)

Henee,if C=0 cutboth C,=0 and C(,=0 at right angles, we

have
2qg+2fif—c—e;=0 and 2g,9+4+2f,f—c—ec,=0.

From these we may express any two of the three symbols g, f, ¢
through the other linearly ; substituting in =0 we get an LEq. of a
vircle containing oné parameter linearly; hence all eircles cutting two
circles orthogonally form a system through two points, i.e., with common
power-line, as already proved.

If C=0 cut three circles orthogonally, then we have threc Egs. of
the form (A), which with C€C=0 give, through elimination of g, f, ¢, as
the equivalent of C'=0:

2+t —xr —y =0.
6 NS

€y P J:

C3 T3 fi
Geometrically this is clearly a circle about the power-centre, its squared
radius the power of that centre.

[ A

2. The cirele orthogonal to | - 0, C,=0, C;=0 isalso orthog-
onal to A, C] + A,C, 4+ 2303 =0, Use condition (A).

3. The polar of one end of a diameter of a circle as to any orthogonal
circle passes through the other end.
Be a%4 y®=* the given circle; then by (A) an orthogonal circle
is 2+ +29r+2fy+r*=0. As to this the polar of (r, 0) is
re+ g(r+x)+r*=0,
which always goes through (—r, 0).

4. Powers of points of one cirele as to another vary as their distances
from the power-line.

5. To find the angle a;, under which C=0 and C,=0 intersect.
a, equals the angle between the radii to a section-point. If r, r, be the
radii, d the distance between the centres, then

2rrycos ay =1+ r?—d’.
If we hold C;,=0 fixed and a, constant, then since d* — r?is the squared
tangent-length to C;=0 from the centre of (€ =0, we have this

relation between the Cds. of the centres of all circles, C'=0, which cut
C,=0, under the angle q,:

?—2rrcosa; = C). ()
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Since r and y enter C,, this Eq. contains three arbitraries, r, y, r. Impos-
ing the further condition that C=0 cut C,=0 under ¢, we geta
second Fq.: 1*—2r,co8a,=C,. These two Eqs. do not yet fix the
centre (r, y) and the radius r of C€;=0; but they determine its family.
For it will cut any circle of the system C,—AC,=0 under a constant
angle. We have, namely,
;2_9,. 71C08a—Ar,C08a, ¢, —M’J’,J
1—a 1—A
which declares that the varying circle C=0 cuts the circle

U:M:ur
1—=a

radius v/, under an angle v such that
v cos y= (r,cosa; —Arycosa,): (1 —A).
We may express r/ through the constants of C) and C, thus:
r2 ={{1—A)(r2—ar2) —AdZ}: (1—2A)>%
Hence v is determined univocally, i.e., is constant.

If we assign y at will and substitute the value of r/, we get a quadratic
for determining A ; i.e., there are two circles of the system €, —AC;=0
which the varying circle C =10 cuts under any given angle. As a
special case, for =0, cosy=1, we see that there are two circles of
the system which the varying circle always touches, on which it rolls.

6. Through the section-points of z*+3*+4xr—14y—68=0 and
24 y2—6xr—22y4+30=0 draw a circle tangent to X-axis.

7. Under what angle do 22+3%?2=16 and (r—5)"+ =90
intersect ?
8. Find the power-centre of
24+ —2xr+6y—15=0,
24+ P+ 14x+12y481=0, and the point (3, — 7).
9. Find a circle through (— 5, — 4) and cutting orthogonally
2242 =42 —6y49=0, 224+ 2+6r—4y4+4=0.

10. Find a circle through (—4, 3), (—2, —3) cutting 22+ 42 —6xr —
7T =0 orthogonally.

11. Show that the point-circles cut a diameter of every circle of the
system harmonically.

12. What circle of 22+ y*— 222+ 8 =0 cuts (z—a)*+ (y—0)F=1?
orthogonally ?
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13. It has been shown (Art. 80) that the polars of a point as to a sys-
tem of circles pass through a point, —the centre of the polar family.
These two points are called poles harmonic as to the system of circles.
Show that the power-line halves the distance between any two harmonic
poles, and that the cireles cut the junction-line of the poles in an involu-
tion of points.

14. Find a circle whose power-lines with two given circles go through
their centres.

15. Show that the centres of all such circles lie on a RL. | to the
power-line of the two circles, named secondary power-line.

16. Show that the circles halving the circumferences of two given
circies form a system, and find the power-line,

17. Show that the secondary power-lines of three circles go through a
point.

18. Find a cirele halving the circumferences of the three circles:
4t —-2x—9=0, 224+ *+32x—-90=0, 4+ 2 —0y—10xr4+18=0.

Centres and Axes of Similitude.

82. Congruent figures are alike in shape and size, differ
only in place; they may be thought fitted one on another.

Similar figures are alike in shape, but not in size. Such
figures may be supposed made thus :

From any point draw rays in any directions; on each ray take
two tracts in a fized ratio; the ends form two similar figures.
The fixed point is called centre of similitude; the fixed ratio,
ratio of similitude.

Clearly the one figure may be thought as the other swollen
or shrunk in like measure throughout.

By pushing or turning either figure the shape is not changed.
When simply pushed, or when turned through a flat angle, cor-
responding tracts in the two figures keep ||, and the figures
keep similarly placed.

By the above construction of similar figures, space is doubled
in thought: the space of the one figure, and the space of the
other. To each point in one space corresponds a point in the
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other. If these spaces be now thought pushed or turned out
from each other, corresponding points remain cenires of simi-
larity for the two figures and spaces. For, by similar triangles,
corresponding tracts, tracts between corresponding points in
pairs, are proportional and include equal angles.

In what follows we shall keep the original construction, with-
out pushing or turning, unless through a flat angle,

Hr

P

83. Clearly, tangents at corresponding points, being drawn
through pairs of corresponding points, are ||

To find the figure ¢' similar to a circle ¢, radius r, ratio of
stmilitude r:r'. Take any point O as a centre of similitude,
lay off OC'" so that r:r'= OC: O0C'. Let P correspond to P,
then OP: OP' =r:¥=00:0C =0CP:CP =r:7.

Since CP is constant, so is O"P'; i.e., ¢' is a circle, radius 7';
i.e., « figure similar to a circle is a circle.

Conversely, all circles are similar. For be ¢ and ¢’ any two
circles, radii » and #'; cut the tract between their circles innerly
respectively outerly in the ratio r:7'; then, by the above, the
figure similar to ¢ is a circle with centre (", radius '; i.e., it is
the circle ¢'.
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Cor. 1. Any two circles in a plane have two centres of simil-
itude : inner and outer, cutting the tract between their centres:
innerly and outerly, in the ratio of their radii. This property is
peculiar to the circle, since it alone of plane figures, being
homogeneous, may be turned around in itself.

Cor. 2. The two pairs of common tangents to two circles
cross in the inner resp. outer centre of similitude. Or thus:

A tangent to one of two circles through a centre of simili-
tude is tangent fo the other; for the radii to the points of touch
are ||.

84 Be C,=(zx—z)'+(y—v,)—r, =0 any circle, and
let 7(C\C)) resp. E(C,C;) denote the inner resp. outer centre
of similitude of C, and C,. Since I(C,C,) resp. E(C,C,) cuts
the tract between the centres in the ratio of the radii, its Cds.
are

m,=T132+?'1551 ,=T1F2+?‘23"1’
r4ry ™+

Ty — Ty Tila— Tl
—— —— L

=¥y Ty —7Te

(', y") resp. (2", y"") is the pole of the chord of contact T'7T"
resp. T7""T" of the inner resp. outer common tangents. Hence
substituting for z', ' resp. 2", ¥" in the Eq. of the polar, we
get as the Egs. of these four chords, after easy reduction :

(Lg—2)(Z—2)+@e—1) (Y — ) =n(nF r),
resp. (2 —x) (2 —2)+(h— ) (Y — ) =1(r2 F 1)

The centre-line is (y,— 1) (x— o) — (22— ) (¥ —1) =0,
whence we see the chords of contact are L to the centre-line.

85. Three circles, €}, C,, C;, combining three ways in sets of
two, have six centres of similitude: three inner, three outer.
Form the Eq. of the RL. through E(C,C.) and E(C.C,), multi-
ply it by (r;— 1) (r; — ), and divide it by ry; the result is
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T Rle—|rnr lyd|n rrs|=0. (H")
T ¥: Y B X, f"zi T Y2 Ys
111 1 11/ T X T

To find the RL. through E(C;C;) and E(C;C)) permute the
indices ; this will not change /', it being symmetric as to the
indices ; i.e., the RLs. are the same ; i.e., the three outer centres
of similitude, E(C,Cy), E(C,Cs), E(C;C)) lie on a RL. By
changing the signs of thz 7’s properly we show that

E(GIGE) ’ I(Czca)- I(Uaox) )
E(CEC‘:T)‘I I(GSC']): I(CIGE) 3
resp. E(C;C)), I(CCy), I(CCy)

lie on a RL. These four RLs. are named axes of similitude of
the three circles : one outer, three inner.

Cor. If two circles touch innerly resp. outerly, the point of
touch is an outer resp. inner centre of similitude of the two;
hence, from the above, if one circle touch two, the junction-
line of the points of touch passes through a centre of similitude
of the two: outer resp. inner according as the circles are
touched alike (both outerly or both inmerly) resp. not alike
(one innerly, one outerly).

EXERCISE.
Find the centres and axes of
2+ y2=16, (r—5)2+y*=81, (z—y)'+ (y—10)*=4.
Draw the figure.

86. If a varying circle cut the circle C;=0 under the
angle a, by Art. 81, its radius R and its centre-Cds. satisfy the
Eq. RP—2rRcosa= (). Treating E and a, or, what is the
same, RE* and R cos a as parameters, we may impose two more
such conditions :

.RE_?T'gRCDEE=G£, RQ—ETSRQGSE=CE;

eliminating the parameters from these three Eqs., we get a
relation between the centre-Cds. and constants, i.e., we find
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the locus of the centre of the circle cutting the three circles
C,=0, (=0, C;=0 under the same angle a. So we get

(r1—73) (Ch— Cy) — (r1— 1) (C — C3) =0,

a RL. through the intersection of C;— Cy;=0 and C,—C;=0,
i.e., through the power-centre of C, =0, C;=0, C;=0.

Writing for €, —C,, C;— C; their values, we find the
coefficients of = resp. y are the coefficients of ¥ resp. —z in
the Iiq. of an axis of similitude ; i.e., the RL. is 1 to such an
axis, and in fact the outer one. For thus far we have taken «
as the inner angle between the circles, i.e., the angle between
the radii to a section-point. To take a as the ouler angle in
case of either of the circles, it suffices: to change the sign of
cos a, since the inner and the outer angle are supplementary and
cosines of supplementary angles are equal and unlike-signed ;
or to change the sign of 7, 1, resp. 1. Taking all the angles
as outer changes all the #’s, which does not affect the Eq. of
the RL. ; changing one of the s and leaving two unchanged is
clearly tantamount to changing the fwo and leaving the one
unchanged ; this can be done in three ways; so we get lree
other RLs. through the power-centre L each to an inner axis of
similitude. Ilence the whole locus of the centre of a circle
cutting three circles under the same (varying) angle is a pencil
of four RLs. through the power-centre, L each to an axis of
similitude.

87. If two circles touch innerly, their inner angle is 0; if
outerly, it is 180°. Hence, the L from the power-centre on the
outer axis of similitude contains the centres of two circles: one
touching the three circles all innerly; the other, outerly: the
r’s are all 4 or all —. Changing the sign of one r we get a
L on an faner axis of similitude containing the centres of two
circles : one touching two circles innerly, the third outerly ; the
other touching the two outerly, the third innerly. Changing
the sign of each r in turn we find in all eight circles touching
each of three circles; a pair of centres liec on each L through
the power-centre on an axis of similitude.
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We micght now determine another line on which the centre of
a tangent circle must lie, by eliminating /2 hetween two Eqs. of
condition, as C,=R*4+2Rr,, C,= R4+ 2Rr,. Dut the line
would not turn out to be a RL. or a circle, hence would not
admit of elementary construction: with compasses and ruler.
But the doctrines of poles and polars, power-centres and
power-lines, centres and axes of similitude, enable us to solve
the general Taction-Problem by use of the ruler alone.

88. Suppose the circle O resp. O' touches the given circles
C,, C,, C; outerly resp. innerly.

(1) Then by Art. 85, Cor., the chords of contact 7,7},

T,T), T,Ts' go through P, the inner centre of similitude of O
and O'.

(2) Hence, PT,: PS,'=PS,: PT!, PT,-PT/=PS,-PS,.
But PT,-PS,-PT/-PS|/'=¢q¢*-¢", ¢° and ¢" being powers of
Pas to O and 0'. Hence, PT,-PT\'=qq' (a constant for
all directions) = PT,. PT.,)= PT,. PT,'; hence Pis the power-
centre of C,, C,, C. ;

(N.B. T and T are anti-correspondent points of O and 0'.)
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(3) Since €, and C; touch O resp. O’ each outerly resp.
innerly, as in (1), the contact-chords T\T, resp. TV'T) go
through the same outer centre of similitude of C| and (), say
I, Hence, as in (2),

KT, .KT.= KT KT, ;

i.e., the powers of K as to O and O' are equal; i.c., i is on
the power-line of O and O'. So too likewise are the outer
centres of similitude of C, and C;, C; and C); i.c., the outer
axis of similitude of ', C., C; is the power-line of O and O,

(4) The power-lines of O and C, resp. O' and C,, i.e., the
tancents at 7, resp. 77/, meet say at X, which is then the pole
of the contact-chord T,T\' as to C,; but by Art. 77 the power-
line of O and O' also goes through X,, the power-centre of
0, 0, C,; i.e., through the pole of chord 7,7} as to C,;
hence, by Art. 69 the chord T,T) goes through the pole of the
power-line as to C|.

Likewise the chord T.T) resp. T3Ty goes through the pole of
the same power-line as to C; resp. Ci.

If, of the two circles O and O, O touch C, and C. outerly
resp. innerly and C; innerly resp. outerly, but O' touch €] and
C, innerly resp. outerly and C; outerly resp. innerly, then the
power-line of O and O' passes through the outer centre of simil-
itude of C, and C,, through the inner centres of similitude of
C, and (), C, and (; i.e., it is the inner axis of similitude
E.LIL; the other relations hold unchanged. Hence the follow-
ing rule:

Determine the power-centre and axes of similitude of the
three given circles ; determine the pole of each axis as to each
circle : each threc RLs. through the power-centre and the three
poles of each axis cut the three circles in contact-points of two

tangent circles.

Remarg. This classic problem, in which the geometry of the
circle seems to culminate, was proposed and solved by Apollo-
nius of Perge (s.c. 220). His solution was lost, but was
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restored by Vieta (¥1603). The first solution of the analogous
problem for space : to find a sphere touching 4 given spheres,
was given by Fermat (71665). Both solutions were indirect,
reducing the problem to simpler and simpler problems. Gaul-
tier (1813) and Gergonne (1814) first gave direct solutions of
the first problem. In the above rule replace 3, circle, axis by
4, sphere, plane, to solve the problem for space. Note care-
fully on what the solution turns: on determining the chords of
contact in the given circles (spheres) by two points : the power-
centre and a pole of an axis (plane) of similitude.

Circular Loci.

89. 1. Given any A cut by a transversal through a fixed point of the

base; through the fixed point and the intersections of the transversal with

each gide and the adjacent vertex

at the base are drawn circles; find
the locus of their intersection.

Be ABA' the £. Take the fixed
point O as origin, the basc as one
rectangular axis, say X-axis. De

__ 0OA=a, OA'"=a'; then the sides
AB, A'B are

y=c(zx—a),

y=c'(r—a’);

the transversal is y=sr; it cuts
the sides at

- y ’
( ey 2 ) (r;-’a 5 8:"'&’) or C, O,
=5 c—8§8 £ —5 c—8
The circles through O, A4, C resp. 0, A’, C’' are
'
>4yt —ax —-—My =0, resp. ﬁ+y‘3’—a'¢—a—{——.ﬂ’3+ 1) y=0.

C—8 —3s

Eliminating s, we get the locus of their interseetion,
{e(2* + y? —ax) —ay}: {2 + y* —ax + cay}
={/(z?+ 2 —dlz) -y} {z* + y* —alx + c'a'y};
or, (=) {(=*+ %)= (a + a')z(2% + 3*) + ad’ (22 + y?)}
+ (1+ec')a'—a) y(£* + y?) = 0;
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or, {I'!_{_yz}{I1+ye_{a+q!:,x—[1“1‘1‘;1”_][;*“']

y + aa’ } = (.
This Iq. is the product of two: the first, of a pointcircle, the origin;
the sccond, of the circle circumseribing the A.

2. A right angle turns about a fixed point; find the locus of the foot of
the L from the vertex on the chord of the intercept of its sides on a fixed

circle.
The Eq. of the cirele, referred to rectang. axes through the centre, is

22 4yt =12, (1) g

Take the diameter through the fixed point P
as X-axis, The chord is

y=sxr+ b. {2]'
Fliminate y between (1) and (2), whence,
(1452) 224 2bx 412~ r2=0. (3)

D

The roots of this Iq., z,, z,, are the 2’s of A,
I; the y's are sxy + b, sr, + b, If OP =, the direction-coefficients of the
angle’s sides PA, PB are

sxy + b sr,+ b
it ST il

3

since the angle is right, their product is — 1; which, cleared of fractions,

gives .
(1+ &) 27y + (ab—c)(x; + 2,) + 12 + 2= 0.

From (3) we have
Tyxy= (?—r?): (14+8%), =z +z,=—2sb:(1+3s?)-"
S (14 82) (e —r?) 4 2B (se + b) = 0, (4)
an Eq. of condition between the parameters s and 5.
The L from P on the chord AB is

y=—1(z—c). (5)

Eliminating s and b, by means of (2), (4), (5), we get the locus of the
intersection of (2) and (5), the locus sought:

2 G- 1 i - ST, 1)
;_y.r,.(:r; c]} {J:+y X 4 3 }_0.

-

This breaks up into the Eq. of the point-circle P, and the circle about

the mid-point of OP, radius U'_" = ‘-'_f.
2 4
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Clearly P is not part of the locus sought; how, then, does it appear as
part in the result? The pair of values, z=¢, y=0, satisfies (5) for
all values, real and imaginary, of s and &; then, from (2), O0=sc+4d;
hence, from (4), furc;:r, (1+8%) =0, s=17

Now the problem as proposed implied only real values of s and b, but
the analytic statement held not only for real, but also for imaginary,
values ; i.e., for the problem in question and for more ; accordingly, the
result yields the locus sought, for real values of s and b, and another locus
not sought, for imaginary values of s and b.

3. Find the locus of the foot of the L from the centre on the chord.

4. Find the locus of the intersection of tangents at the ends of the
chord.

Be (z',y') the intersection; then 2/z+ y'y=r2 is the chord. Combine
this with 22+ »*=1?; the pairs of roots so obtained (z,, »,), (r,, ¥,) picture
the ends 4, B of the chord; the coefficients of direction of P4, PE are

N1 _ ¥ | and their product is —1.
I,—c IT,—¢C

Hence, (Z*+ y"2)(r* =€)+ 2r%x’ =24 = 0;

or, dropping the primes,

{.'r—{- rff:. }’+Fz=

ré—¢?

(2r'—c?)
(r* — ct)?

If R be the radius of this circle, d the distance between the centres,
then (R —d&)P=2r(R*+ d?),
the condition that a quadrilateral inscribed in one circle may be circum-

scribed about another, any tangent to the inner being taken as a side.

5. Find the locus of a point the feet of perpendiculars from which, on
the sides of a A, lie on a RL.

Be rcosay+ ysing—p;=0=N,, N,=0, N,=0 the sides of the
A (T 1), (%2 ¥2), (73, ¥3) the feet of the Ls; (x, y) the point. Then are
Ny, N,, N, the lengths of these Ls. Their projections on the axes are

z—x, =N,co8a,, y—y,=Vsina,,
and so with indices 2, 3; hence,
Tp=1x— Nycosay, yx=y—INyBino,

for k=1,2, 8.
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The feet (x,, ¥,), (2 ¥2)s (x5 ¥3) lie on a RL. when, and only when,

Y= W Xy— XL = Yy — )+ Tzg— Ty,

or, after reduction and substitution,

NN, sin (a, — a,) + NNy sin (@, — a3) + NV, sin (a3 — ) = 0.

109

(1)

N,, N,, N, are linear in r, y ; hence, (1) is quadratic in z, y. The first

term yields as coefficients of x?, %, resp. xy,
€08 @, 08 a, 8in (e, — o),
sin @, sin a, sin (a; — a,),
resp. sin (a; + a,) sin (a; — a,).

The difference of the first two is

cos (a, + a,) sin (a, — a,),

or, i (sin2 a; —sin 2 a,).

The third is — 1 (cos2 a, —cos 2 a).

Permuting the indices to get the contributions of the other terms, and
summing, we sce that the difference of the coefficients of x* and ;7 as
well as the coefficient of xy, vanishes; i.e., the locus is a circle; the Eq.
is also satisfied by putting any two of the N's =0; i.e., the circle goes

through the vertices.

Hence, the feet of Ls on the sides of a A from any point of the circum-

scribed circle, and from no other, lie on a RL.

This problem deserves further notice. Suppose the RLs.

N, =0,

N,=0, N,=0 tangent to a circle O, radius r, centre at origin; then,

Pr=ps=ps=r. Developing (1), we have
M(2*+ ) —Pzx— Qy+ F=0,

where M = sin (o, — a,) sin (ay — a,) sin (ay— a;)

If R be the radius of this circle, D the distance between the centres,

R = (P4 QY :431!—§,
D= (P24 Q2):4 012,
F

whence, D = A

If 4, A, A, be the angles of the A, then

Qg = H.l:-ﬂ‘--xiw “3_“-2=T_-A11 a,—ns‘—*r—hﬂg;

hence, if S=areaof &, M/ =—sind, .sind,.sin 4,=—S:2 R?;

and from (2), F =1r?(sin A, + sin A, 4 sin 4;).
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If s, 5., 5, be sides of the A,
28=r{(s; 4+ 5, + 8) =2 Lr (sin A} + sin 4, + sin 4,);
whenee, F=rS:R, and hence, F: M=—-22Rr;
L IR=12-2Rr (I)
Such, then, is the relation connecting the radii and distance Ietween the

rentres of the inscribed and circumseribed eircles of a 2. Now, holding the
circles fixed, let us see how we can vary the A,

Taking the one centre as origin, the other on the X-axis, we have
2 i
— _—j..)_.—. — -.E‘ !,J¥: I -
4. M 4.1/
By virtue of (I), these three relations are satisfied if these fwo are:
Q=0 F:M=-—-2PRr

Choosing one of the angles a,, a,, a; at pleasure, we can still find values
of the other two to satisfy these two equations.

Hence, When the relation D= I* — 2 Rr holds between the radii of two
circles and the distance between their centres, a £\ can be drawn in the one about
the other, the direction of one side being taken at pleasure.

Theorems analogous to these two for triangles and quadrilaterals hold
for polygons generally.

We got (1) by imposing the condition that the feet of the Ls lie on a
RL. Let us see how it expresses this condition. Suppose the origin
inside of the /s and a,<a, <a,;. Be
P(x, y) any point within the A,
and join the feet of the Ls from it
on the sides of the 4, to form a A
F, F,, F, Then N,, N, N, are
the lengths of these _Ls, all have
the same sign —, and are like-
signed with the s from the origin
inclined @, 0.4, a3, as both P and
the origin are within the A, Ience
the terms of the left side of (1)
are in order the double areas of
the &s F,PF, F,PF, F,PF, the
whole left side is the doulle arca
of F,FF,.

If P'(r,y) be without the A, then one of the Ls, say N, becomes +,
and the left side of (1) is the difference between the double area of the A
F,/P'F,/ and the sum of the double areas of F\!P'F," and F/ P F/, ie,
again, the whole left side is the double area of F)/ F,/ F,/. Now this double

Q:“: i
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area is 0 when, and only when, F, F,, F, arc on a RL. Accordingly we
may gencralize our problem by requiring that the area of the A FyF,F,
be not 0 but some constant = ¢2  Then the left side of (1) is this area
doubled ; also since (1) is the Eq. of a cirele whose radius we call R, the
left side can be written A (d? — R?), where K is constant and 2 stands for
the general expression, o4 y* + 29+ 2/y. Hence
N N, sin (e, — a,) + N, N, sin (ag — a,) + V..V, sin (a; — a;)
=z2c = K{d* — %)

is the locus of a point the feet of Ls from which on the sides N, =0,
N,=0, N;=0 of a/hare vertices of a A of constant area ¢2, 4+ or —.
The locus is two circles concentrie to the circle circumseribing the given

£, The outer is always real ; the inner, only when 2 < AR2,  The given
area ¢? changes sign for d= R, i.e., as I” goes through the cirele.

6. Find the locus of a point, the sum of whose squared distances from
n points, multiplied resp. by given constants, shall be a given constant.

7. Find the locus of the eentre of a circle seen from two given points
under given angles.

8. Find the locus of the centre of a circle that cuts two given circles
at ends of diameters of cach.

9. From a fixed point /° are drawn tangents to a system of circles
through two fixed points; find the locus of the intersection of the chord of
contact with the diameter through £

10. Be 1231 2" 3 a regular hexagon; draw 13,13/, also any RL.
through the centre, cutting 1 3, 15/ at 4, 4; find the locus of the intersec-
tion of 2 4 and 2’ ¢/,

11. Find the locus of a point whose polars as to three given circles
meet in a point.

12. A constant angle turns about its vertex fixed on the bisector of a
fixed angle ; find where the L from the vertex on the junction-line of the
intersection of the sides of the angles meets it.

13. Find the locus of a point from which two given circles seem of
like size.
14. Find the locus of a point whence two consecutive tracts LI, IV

of a RL. scem of like size.

15. Find the locus of the mass-centre of a A inscribed in a given circle,
on a given chord as base,
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16. Under the same conditions as in (15} find the locus of the ortho-

"

centre and of the ecentre of sides of the O

17. Of two related poles, as to a given circle, one glides along a RL.;
how does the other glide ?

18. How does one of two related poles as to 22+ 3*=7r* glide when
the other glides along  (r—a)* 4 = I*1
19. Find the locus of the mid-point of a chord of a given cirele, which

subtends a right angle at a given point.

20. Find the locus of the foot of the 1 from the origin on a chord of
a given circle, which subtends a right angle at the origin.

21. Two variable circles touch each other and two fixed circles; find
the locus of their point of touch.

22. Find the locus of a point whose polars as to three fixed circles
meet in a point,
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CHAPTER 1V.

GENERAL PROPERTIES OF CONICS.

90. The general Eq. of curves of sccond degree, called

Conics (Art. 152), is
kat + 2 hay +jy*+ 292+ 2 fy +¢=0,
or F(z,y; =, y)=0.

Among many ways of treating conics that seems most natu-
ral which proves itself the best in the study of Quadrics (sur-
faces of second degree), namely, to develop the relations of
the locus to the RL. Let the student recall that

The Eq. of the polar as to F(z,y;,y)=0 of the pole
(1, ) is .

F(x, s 2,9)=0, or F(x,y;x,y)=0 (Art. 69),
or (k&y+hy, + @z + (hay +jn + )y +ga+Sfin+c=0. (J)

If the pole be on the curve, the polar is a tangent at the pole.

The Eq. of the pair of tangents to F(x,y; x, y)=0
through (=, ¥,) is

F(@, 15 @ 31) - F(2,y 5 2,9) = {F (@, 105 2,9) §° (Art. 72).

By passing to || axes through a new origin, O'(2',%'), k, h, j

are not changed, but g, f, ¢ are changed into

g'=ke'+ hy'+ g,

J'=hx'+jy'+ 1,
d=F(2,y ;'\ y") (Art.51).
IfA=|k kh g|=0, the conic breaks up into two RLs.
hilf
gfc

If, also, C=1%j — h®* =0, the RLs. are |.
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9L If (2, ') and (x, ) be a fixed and a variable point on
a RL. sloped 6 to the X-axis, the L to which is sloped a resp. 8
to the X- resp. Y-axis, and 3 be the distance between ihe
points, then cither of these two equivalent sets of relations
states the Law of Sines of the A PDF :

ol ot ot )
m_ % =‘F_ :H—= S ; i m=L_y:__3 .
sinwe—@ 8ind sine cosf cosa sine

sin sin w — #
Put fig 81 ﬂ=l3f}3a‘ q="50w =c?sﬁ;
sinw sinw sin sin w
H f
whence s—. 500 _ ¢

sinw—0 4

Then z=2'+4¢8, y=y"+4¢'.

To find the distances from (z', ¥') at which the RL. meets
the conic, substitute in F(x, y; «, y) =0, as in Art. 51;
hence

(kg* +2hqq'+ j9™) & + 2§ (k2'+ hy'+ g)q
+ (W' +jy'+ )98+ F(2, ' 5 2, y') = 0.

A geometric interpretation of this Eq., according to Art. 60,

lays bare the form and general properties of the conic.

92. The roots of this quadratic, 8,, J,, are counter (equal and
unlikezsigned), i.e., (2', %") is the mid-point of a chord of the
conic, directed by 6, when, and only when,
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(kx'+ Ly’ + 9)q + (@' + jy' + ) q'= 0,
or (kz'+ Ly'+ g) + s(ha' + jy'+ ) = 0. : (K)

For 6 constant, s, ¢, and ¢' are constant, and the Cds. (o', ")
of the mid-point of any chord directed by 6 are connected by an
Iiq. of first degree; i.e., the mid-points of all || chords of a
conic lie on ¢ RL. Such a RL. is named a Diameter.

By changing # we change the direction of the | chords,
change s, and change the diameter; s, then, is the parameter
of the system of diameters, and since it enters (/) lincarly, all
diameters pass through a point, called the centre of the conic.

This centre is the intersection of the two diameters

ka' +hy'+g=0 and Ay'+jy -+f=0;
i.e., the point (G:C, F: ("y. It is in finity or in a0 according
as O"Z 0 or (C'=0. Hence conics are named convenieuntly,

but not quite correctly, centric and non-centrie, according as
the centre lies in finity or not in finity.

93. We have got the notion of centre from that of diameter,
but we may get this from that, thus:

The coefficients of  and y in Eq. (J) of the polar of (z, #,)
vanish when Ax;4+0y4+9=0 and ha+4+jy,+/=0, i.e.,
when the pole is the point (G': C, F': ') ; hut when the coeffi-
cients vanish, the intercepts on the axes are both <, i.e., the
L. lies wholly in oc.* Hence (G : C, F:C) is the pole of the
polar at «o. Hence the polar of every point at = goes through
(G:C, F: C). Now a pole and any point oun its polar are a
pair of points to which the section-points with the referee of a
RL. through the pole and point on the polar are an harmonic
pair ; and since one point of the first pair is at oo, the other
halves the tract between the second pair (Art. 41) ; i.e., the
point (G:C, F:C) halves cvery chord of the referee (conic)
through it. Such a point is named centre.

* See Note, page 196,
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Now take any point on a RL. or polar through this centre ;
by Art. 71 it is the fourth harmonic to the pole at o, and hence
halves the tract between the other pair, namely, the section-
points with the referee (conic) of the RL. through it and the
pole. But all such RLs. are ||, since, as the point glides along
the polar, they turn about the same point at o, the pole of that
polar ; hence, too, they are all cornjugate to that polar and no
other RLs. are; hence, a RL. through the centre of a conic
halrves a system of || chords which are conjugate to it as a polar.
Such a RL. is ecalled a Diameter conjugate to the chords it
halves.

Among all the chords conjugate to any diameter D there is
one and only one through the centre, which is accordingly D’s
conjuqate diameter D'. The chords which D' halves are || to
D. For D passes through the pole of D' at oo, and hence all

’s to D pass through that pole at « ; hence all chords || to
D are conjugate to D', and hence halved by D'. Hence, conju-
qate diameters, D and D', of « conic halve each all chords || to
the other. This, indeed, is clear from the fact that the conju-
gate relation is mutual (Art. 69).

94. From (K) we see that the direction-coefficient s' of the
diameter halving chords whose direction-coeflicient is s is

S’=—k+ks; whence s:*i{;+I*3'.
h+js , k + js'
If CE I’j-—-'fﬁ: ﬂ'!
- 1. 1. a ]
then 3':——@, 3=_%ﬂ?‘f_+ "/{'3}_
Vi Vji(VE+Vj-s')

Hence, s’ is constant, i.e., diameters of a mon-centric conic
are ||. We may not cancel Vk + v/j-s'in the numerator and
denominator of s, since it is 0, and to divide by 0 has no sense ;
but s takes the undetermined form {. To find what this means,
put 8’ or its value for s in (K) ; so we get the Eq. of the diam-
eter conjugate to the chords directed by s, i.e., the || diame-
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ters. Reducing, we get 0 + 0y + g7+ VEk=0; but this,
by Art. 92, is the Eq. of a RL. at 0. Now this RL. at oo goes
through the centre at =0, and so halves all chords through that
centre, i.e., halves all the || diameters, i.e., is conjugate to
them all; and this it does whatever its direction may be.

Hence, the common conjugate to all diameters of a non-
centric conic is the RL. at o0, and may be thought || to them
all.

95. For a=90° ¢'is 0, and the diameter is
kx'+hy' +9=0;
this, then, is the diameter halving chords || to the X-axis.
So, too, hx'4j'%'4+f=0 is the diameter of chords || to
the Y-axis. These diameters are themselves || to the ¥- resp.
X-axis when and only when A =0; but then they are con-
jugate, as each halves chords || to the other; hence, the condi-
tion necessary and sufficient that the axes be || to a pair of conju-
gate diameters is h=0, i.e., the term in xy must vanish.
If the centre be taken as origin (which can be done always
and only in centric conies), the new coeflicients of z and 7,
kx, + by, +¢g and Rz, +jy, +f, vanish, and the central Eq.
becomes
ke + 2hay +jy° +¢'=0.
If, besides, a pair of conjugate diameters be taken as axes, the
term in 2y vanishes, and the Eq. takes the form

k':ng +ny2 + {:I = 0.
This Eq. is a pure quadratic both in # and in y: to any value

of either correspond two counter values of the other, each
axis halving all chords || to the other.

96. In general, diameters are obligue to their conjugate
chords ; are they ever L ? Choose rectang. axes; then s and
8' become tan @ and tané’, and

_ﬁk—{-h tan @

t EFS L]
i h+jtang@
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When chords and diameter are 1, tanf-tanf'= —1; or, on

rednction
htan6' 4k —jtan 6 — h = 0.

This quadratic in tan @ has two roots: tand,, tan 6,, both always
real. They yvield each an © of values of @, but as they differ
among themselves only by some multiple of =, the two «’s
determine but two different directions of chords L to their
diameters ; also, since tané,tanf,= — 1, these directions
are L to each other: hence, if either be thought as the direc-
tion of the chords, the other will be the direction of their
diameter. Again, by Art. 82, these two L dircetions are the
ones that halve the angles between the directions fixed by the
pair of RLs.  kx*+42 hay+ji*=0.  Ilence, there is one and
only one pair of L conjugate diameters: the pair halving the
angles between the Asymptotes (see Art. 97). They are named
Axes of the conic.

N.B. Of course, in the non-centric conic only one diameter
1 to its chords is in finity ; it is called the Axis of the conic.

97. If the coeflicient of the second power of 4 be (0, one root,
&1, of the Eq. is « ; i.e., one distance from (', #') to the conic
in a direction fixed by

k@ +2hqq’ +jg" =0, or Lk4+2hs+js=0

is . This Eq. is quadratie in s; hence there are two such
directions, which are real and separate, real and coincident, or
imaginary according as A& —Fkj(or —C)is >0, =0, or
< 0. The conic is named accordingly Hyperbola (excess),
Parabola (likeness), or Ellipse (lack). Denote them by H, P,
E. H has points at oc in two directions, P in one, E in none
(real).

The co-factor C is called the criterion of the conie. The
direction ir which lies the point at o in P is fixed by the value
of s: s=+~k:VJj, since kji—I'=0; but this is the
dircction-coefficient of the || diameters; hence all diameters of
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the non-centric P meet it at «, and hence can meet in only one
point in finity.

98. If the cocfficients of both powers of 8 vanish, then both
roots, o, d,, are = ; the coetlicient of & vanishes when and
only when Loth

! +hy' +4=0 and A4y’ +f=0;

i.c., only when the origin is at the centre; i.c., in # and E, not
in P.  Ilence, fico R Ls. drawn through the centre in directions
fixed by Ek4+2hs4 =0  meet the centric conic euch in
two points at . Now the points at .o on a RL. are consecu-
tive ; hence, these RLs. mect the centrie conic at two consecu-
tive points at s« ; i.c., they tonch it at ».

These RLs. through the centre tangent to the centric conic
at oo are named Asymptotes; they are rcal in H, imaginary in
E. Their directions may be named asymptotic. All RLs.
drawn in asymptotic directions, except the asyvmptotes, meet
the conic in one finite, and one infinite, point; both points are
real in A, imaginary in £.

In the non-centric conic, P, the one diametral divection rep-
resents fwo coincident asymptotic directions ; all diameters of P
meet the curve in one finite, and one infinite, point.

99. If E, E', C' be ends and centre of a diameter, P any pole
on it, P’ the section of the diameter with P’s polar, then, by
Art. 71, E, P, E', P! form an harmonic range ;

. EP_EPIJJ_
T PE'.P'E

C E
£ TP P!

—1, or EP: PE'=EP': E'P'.

On compounding and dividing, results
CP:CE=CE:CP;

i.c., The geometric mean of the cenlral distances of any pole and
its polar, measured on any diameter, is half that diameter.
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In P the centre C and one end of the diameter, say E', retire
to o ; hence E' halves PP’ outerly, and hence E halves PF'
innerly. =

By definition the poles of a system of || chords lie on the
diameter, D, conjugate to the chords, halving them ; hence the
tangents at the ends of any one of these chords meet on the
diameter, D, in the pole of that chord; if the chord be a diame-
ter, D', its pole is the point at o on D), and the tangents
through its ends are accordingly || to each other and to D;
i.e., tangents at the ends of a diameter are || to its conjugate.

In P this conjugate is at oo, but the tangent is still || to the
diameler’s conjugate chords.

100. We have reduced (Art. 94) the Eq. of centric conics,
H and E; to reduce that of the non-centric, P, take as X-axis
any diameter, as Y-axis the tangent through its end. Then
the absolute wvanishes, the origin being on the curve; the
Eq. becomes a pure quadratic in ¥, since to any value of z
must correspond two counter values of %, the chords || to
the Y-axis being halved by the X-axis; the term in2* vanishes,
since, for any value of ¥, one of the x-roots of the Eq. must be
o, one finite, the |’s to the X-axis, i.e., the diameters,
meeting the curve in one point in finity, one in « ; there remain
only the terms in x and 7° which may be written conveniently
thus: #°=4q'z, the Eq. of the P referred to a diameter

and the tangent at its end.

The figures on page 121 illustrate fully the foregoing articles.

101l Let us resume the study of the quadratic in 6. The
coefficient of é* contains k, 1, j, 6. and may be written

b(k, hyj; 8);

then the product of the roots §,, 8, 1.e., of the distances of
(#', »') from the conic in the direction &', is

F(z',y'; =5 9') sp(hyhyjs 9r)
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The product of the distances of (z”,%") in the same dircc-
tion is
F(:r”,_y”; ﬂ:h" ff") . ‘;ﬁl(ftv, h-.j; ﬁ"),
The ratio of these products
F{xf’ yl ; ﬂ:iﬁ yl) : _P‘F(J:H* y” ; ﬂ:”, y”)

is independent of #', i.e., the same for all directions; i.e.,
the ratio of the products of the distances of any two points from o
conic is constant for all || directions of the distances.

By taking two fixed directions 6', §" and one arbitrary point
(', '), instead of two fixed points (2',%"), (2", #") and one
arbitrary direction ', we get as ratio of the product of the
distances

bRy lyji 0 :p(kyhyjs '),
— a result independent of the point (z', "), the same for all
points ; i.e., the ratio of the product of the distances of a point
from a conic, measured in two jfixed directions, is conslant for
all points.

The interest of these theorems lies mainly in the special
cases :

(1) Take the centre as the point; then the two distances in
any direction are equal, being halves of a diameter; hence the
ratio of the produvets of the distances from any point to « conic s
the ratio of the squared diameters || to the distances.

z,y
=" f, i’ﬂ

(2) Take the directions tangent to the conic; then the dis-
tances are again equal; taking the second root of the ratio of
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the products, we see that the ratio of two tangent-lengths from «a
point to a conic equals the ratio of the || diameters.

(3) Take as directions those of the diameter through the point
and its conjugate chord; then the distances on the chord are
cqual, and those on the diameter are its segments; hence the
square of any chord varies as the product of the seqments into
which it cuts its conjugate diameter. See the figures.

-
m
4

"y

ks

102. By Art. 51 k, A, j are not changed by a change of
origin; to find how they are changed by a change of axial
directions, we might use the general formulae of transformation
(Art. 21) ; much neater, however, is this method of Boole :

The transformation formulae being homogeneous in Cds., in
passing from axes X, ¥ to axes X', ¥, inclined o resp. ', the
expression  Ax*+4 2hay +jy°  changes into

kFl:FE + 1.2 }'L!‘I_'EFE!J +jry'2.r
so that ka® + 2 hay 4 jiy° = K'a"” + 2 b'z'y' 4 j'y™.
Also o'+ 2aycosw+ 1 =2+ 2 2% cos o' + y®,
since each is the squared distance of the same point (z,y)

(«', ') from the common origin. Add this Eq., multiplied by
an arbitrary g, to the first; there results

(k4 w)a? + 2(h + p cos w)ay + (j + u)y?
= (K'+ p)2" + 2 (W' + p cos w')2'y'+ (j'+ p)y™.
Each side of this Eq., equated to 0, represents the same locus :
a pair of RLs, through the origin (Art. 44) ; if w be chosen so
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that the RLs. fall together, each side becomes a perfect square ;
i.e., the same values of p make both sides perfect squares; i.e.,

the roots, u,, ps, of the two Eqgs. :
*k+p) 0 +p)=(h+pcosw)’
and (K +p) (' + p) = (A +pcos o')*
are the same ; i.e., corresponding ratios of the coefficients of
the powers of p in the two Eqs. are equal; i.e.,
(E+j—2hcosw): sinw = (K +j'—2h cosw') : sinw',
(] —12) : sinw = (Kj'— h") :sine" ;
i.e., the ratios (k+j—2hcosw):sine and (kj —A%) :sinw
are unchanged by any change of axes.

Geometric Interpretation.

Suppose the central Eq. of a centric conic brought to the
form :
ka® 4 2 hay +ji=1;
then are —]—, .3 the intercepts on the axes, and are half-diam-
vk Vj

eters.

1. For =90, from the above, A+ is coustant; i.e.,
the sum of the squared reciprocals of two rectang. diameters s
constant.

2. For conjugate diameters taken as axes, A& =0; hence
v, and ‘Ei"—?ﬂ are constant; hence their quotient 1+1. or
8in w sin w | ko
the sum of two squared conjugate diameters, is constant.

Also, by inverting and taking the second root, 2@ is con-

stant ; i.e., the area of the parallelogram of lwo conjugate half-
diameters i3 constant.
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CHAPTER V.

SPECIAL PROPERTIES OF CONICS.

Centric Conics: Ellipse and Hyperbola.

103. The Eq. of the centric comic referred to conjugate
diameters is
R+ 'y +c¢'=0 (Art. 94).

Two general cases present themselves:

I. ' and j' like-signed, say both +; then the criterion
C=hj—1*=Ek'—0>0; hence the curve is an ellipse. Under
this head are two special cases :

(1) ¢' < 0; then the ellipse is real, denote it by E.

(2) ¢'>0; then the ellipse is imaginary, denote it by £'.

For clearly no real values of x and y satisfy its Eq.

II. %' and j' unlike-signed, say k' + and j'— ; then the cri-
terion COC=k—1F=k"—-0<0; hence the curve is an
hyperbola. Under this head are two special cases :

(1) ¢'<<0; then the hyperbola is primary, denote it by H.

(2) ¢'>0; then the hyperbola is secondary, denote it by H'.
Now write Lo for =k on observing signs there
= ﬂlz' E 1{\,r‘-‘ ¢! ' g Sig

result these ligs. of E, E', H, H', referred to conjugate diameters :

@ ¥

E,T_,-I—b—,._;s]a _H+E_FE—_ 1
2 2 o

2 _¥_q, T _¥__ 1.

ﬂ-i .
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To denote that the pair of rectang. conjugatc-diameters, or
the axes of the conic, are taken as Cd. axes, drop the primes
Jfrom a and b.

104. Thus far little reference has been made to figures, for
the shapes of the curves were supposed unknown, and it was
deemed important to illustrate how the properties of curves
may be deduced while their forins are yet unknown. Reason
far outruns imagination. We may reason correctly about
forms we cannot imagine at all. DBut we may now find out the
shapes and draw the figures of three of the above curves.
Only the imaginary £’ is unrepresentable in our plane.

Putting y=0 in the Egs. of E, H, H', there results
r==%q, =24, z==%xIia;

i.e., all three cut-the X-axis on each side a from the origin
(centre) : E and H in real points, #' in imaginary points.

So, if =z2=0, then y=xb6, y==xib, y==+0b;
i.e., all three cut the }-axis on each side J {from the origin
(centre) : £ and H' in real points, # in imaginary points.

It is common to assume « > D in the £; then 2a and 2 b are
called axes major and minor of the E. 2a resp. 20 is the real
(commonly ecalled transverse) axis of H resp. H'; 21D resp. 2iu
is the imaginary axis of H resp. H'. The real axis 20 of H'is
often called, though hardly properly, the conjugate axis of H.

Plainly, like results hold when a and b are primed ; i.e., when
any pair of conjugate diameters are taken as Cd. axes: £ cuts
both in real points like-distant from the centre; H cuts only
one of two conjugate diameters in real points, while #' cuts the
other. Hence, while all the real ends of one system of diame-
ters lie on H, all the real ends of their conjugates lie on H'; and
conversely. Hence H' is commonly called the conjugate of H ;
strictly each is the conjugate of the other.

Since the rectang. Eqs. are pure quadratics in both « and 7.
each curve is symmetric as to each of its axes.
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Clearly ¢ and b are the greatest values of z and » in £; a is
the least value of @ in H, b the least value of y in #'.

105. If we pass to polar eds., putting p cos 8, psin @ for =, y,
there results on reduction and inversion :

L* i at—pt
for E, e 3 where &E=——;
1 —e*cosé L
a a
— b w +
for H, pF = — _ﬁ = where € = "t :
1 — e cos v a
b? « P
for H'. pt= — where &= LI; :
] —e*cos @ a

as central polar Eqs. of E, H, H', one side of the real axis of H
being polar axis. That of H resp. #'is got from that of £ by
simply changing the sign of * rvesp. a’. The geometric mean-
ing of €*, used here for shortness, will be seen later.

These kgs. are pure quadratics both in p and in cosf, also
cos 6 = cos(— 0)° = cos(r — 6)°, and two counter p’s make a
diameter ; therefore,

Diameters like-sloped to an axis are equal, and equal diameters
(re like-sloped to an awxis.

106. Let us trace £, For =0, p=a; asf increases
to T, p decreases to b; as @ increases to m, p increases to a;

g 3 T L
as @ increases to fjf’ p decreases to b; as 6 increases to 2=, p

increases to a. The greatest resp. least diameter is 2 a resp.
20. |
In H,for 6=0, p=a; as 0 increases to cos ! 1, p
e

increases to oo, all values of p in A’ being meanwhile imagi-

; 1 ™
nary; as @ increases from cos '~ to z and thence to = —cos ' =,
L& e

p in H' decreases from oo to b. and thence increases to o, all
values of p in H being meanwhile imaginary; as § increases
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from =—cos'. to = and thence to w -+ cos ’1, p in H
e e

decreases from = to a, and thence increases to =, all values of
p in H' being meantime imaginarv; as @ inereases from

w+ens“~:- to %E and thence to 2 = — cos’ ‘1, p in H' decreases
: ¢
from « to b, and thence increases to ¢, all values of p in #

1
i
to 2, p in H decreases from % to a, all values of p in #' being

meantime imaginary.

being meantime imaginary; as ¢ increases from 2 # — cos

Y

L] L L ]. -
The two directions f=cos!_ and =mx—cos -
- " E F
with their counters corresnond to
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tan f = +%, and tand= —g,

which are the direction-coefficients of the asymptotes :

A

? /

Ilence the two A’s have common asymptotes, and along these
asymptotes they close in upon each other at oo,

107. Solved as to y resp. x the Eq. of E is
Y, = b V&EZF resp. »= : VU — .
[

Now y.=Va*—a? resp. w,=VI—1y is the Eq. of
a circle about the centre (origin), radius a resp. b, which may
be called the major resp. minor circle of the E. For any value
of « the corresponding values of » in the £ and the major circle
are in the ratio ,:9,=b:a. Hence the E is the orthogo-

nal projection of its major circle under the 2 cos™' _'r.) .
a

@%% /\[\ -

g \/ e,

So the minor circle is a like projection of the £. Think the
surfaces of E and the major circle made up of elementary trap-
czoids, or covered with threads L to the common diameter, cor-
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responding elements of the two surfaces will have the fixed
ratio ) : @ ; hence the whole areas will have that ratio : i.e.,

b N
area of £ == -ra® = wab =Vwa*- =l
ct

equals the geometric mecta of the areas of major and minor circles.

The student ean easily convinee himself that the ratio of the
projection of any plane area to the area projected is the cosine

of the angle of projection.
The Eqs. of E and H solved as toy: 9= E?V/ﬁ"’ —a=  and
Y= é’fx‘-’ — a* declare that any ordinate is the I;'::th part of

the geometric mean of the segments into which it cuts the major
axis; for the segments are a + 2z, a —z in the E, and z+ a,
x—a in the H. In the E the section is inner; in the K it is
ouler.

For a=25b, the E reduces to a circle or equiaxial £. The
equiaxial H is 2* —y* = «*. It corresponds to the circle, and is
called also equilaterul or rectangular, since its asymptotes are
1. Tt is congruent with its #': o — 3= —a’, and falls
on it when turned through 90°. As in the circle, so in the
equiaxial H, any two conjugate diameters are equal.

A

o
Z TN\

108. By Art. 23 the direction-coeflicients of two conjugate
k+4hs

h+js’

diameters are connected by the relation, s'= — or,
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b " L k
if conjugate diameters be axes, and so hA=0, ss'=—7=;

i.c., their product equals the negative ratio of the coefficients of
#* and »°; henece, in the present form of the Eqs. of £ resp. H,

y "= -

3 == - .'_ I'EEP. L o

w o'’
/s s
or . tanf-tan 6' = — — resp. = +-—.
(t ia

Ienee tan § and tan @' arc unlike-signed in £, like-sicned in A ;
i.c., 6 and @' lic in adjacent quadrants in® E, in the same quad-
rant in H#; i.e., of two conjugate diameters of an £, onc lies
in first and third, one in second and fourth, guadrants ; but of
an H, both lie in first and third or both in second and fourth.

: b b, .
In E,. if tand= + ,» tan == PR L when one of
two conjugate diameters of an E is one diagonal of the rectangle

of the tangents || to the axes, the other is the other diagonal.
This pair of diameters of the £ are named equi-conjugate.

: b b

In H,if tané= % W tané' = + -

diameters full together on each dingonal of the rectangle of the

tangent || to the axis; i.e.. on cach of the asymptotes; hence
each asymptote is o self-conjugate dicineter.

In £, as 6 increases, 6 increases; in H, as # increases, ¢'

decreases.

i Les, two conjugate

109. The Eq. of the tangent to E or H is (the wpper sign
going with £)

T 4 Ny il RO B
——Fe =1, or —-F+=—7=1.
g2~ b o’ b
| = - ‘1‘ ':1.'.
The Eq. of the diameter through (x, ) is e Its con-
L L l

jugate is || to the tangent, and goes through the centre; hence
its Eq. is

22 4 Y _ g,
@
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To find the Cds. x,, 7, of an end of this conjugate, combine
its Eq. with the Eq. of the curve, thus:

ED"J aﬂ y‘B . ﬂzyz y-ﬂ xE .
;b* :hbﬂ 1, or o2 -5‘:__-:1:—“! =1.

For E resp. H the parenthesis § { is 41 resp. —1; hence,
for E,

b
$2=:F%yn =k i)
(0 . b
for H, Ly = i*g#la 3’2=q=1'&$14

Again we see only one of two conjugate diameters has real ends
on an H.

110. Plainly, if the = (or ) of one end of a diameter is
known, the diameter itself is known as one of two equal diame-
ters like-sloped to the X-axis; hence we can express any
squared half-diameter through the x of its end If (@, ) be
the end of a' in an E, then

bﬂ

a” =27 +.h'—=t=1+ (G” i’:”)—ﬁ*l- o= b + e'xt.

By Art. 102 a4+ 0" =a*+ b, hence b” =a® — e*x’.
Now O°=axi+%°; hence, by Art. 109,

a" E"E 9 9 0
—— Jl + —qﬂ!‘l = 'ﬂ-' — 82.1'"4
i a’

Changing the signs of b* and 5", we get for the 4,

o a

a b*

a” = —b | EEEIE, b = a? Eﬂmlz_ (b“ le ' 23:12).
a3 a

111. By Art. 102 the area of the parallelogram of two conju-
gate half-diameters. and therefore its fourfold : the area of the
parallelogram of the tangents through the ends of two conju-
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aate diameters, is constant. If ¢ be one X between these diam-
cters. then thisarea is 4 a't'sin¢g and =4 ab; whence

sin ¢ = prs
Hence ¢ is least when a'b’ is greatest; and a'd’' is greatest when
a? 4+ b* 4 2a'b', which =a"+5b"—2a'd', which =(a'—10")?,

is least; i.e., when «a’'=b'; i.e., when the diameters arethe
equi-conjugates. For equi-conjugates,

ab _ 2ab

a't! a4 b

sin ¢ =

Of course this last reasoning is necessary and applicable only in
case of the £; in the H the X be-
tween conjugates is least when th-::}r‘
fall together in an asymptote.
If 2a', 20" be two conjugate diam-
eters, 2p the distance between the
tangents || to 2a’, then the constant
area 1is

2a0'.2p=4ab, or p=

1.e., the distance from the cenire fo a tangent is a four(h propor-
tional to the half-diameter | to the tangent and the half-axes.
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112. The definition of the normal (Art. 73) yields as its Eq.

ﬁz bﬂ a 51’

b —_X — (¥ — =0; or — ey =a® b,

= (= l)q:yl(.f %) i AR YEOF

The intercepts of the tangent on the axes are g. and + b—-;
those of the mormal are 1 N
2 - 2
L :FJ,b @  and L ?23"1-
a’ e =

The product of corresponding intercepts of 7' and N is a
constant: & (a® F b%).

The intercepts on the tangent between the point of touch and
the X- resp. Y-axis may be named X- resp. Y-tangent (lengths).

To like intercepts on the normal like names are given.

The projections of these tangent and normal-lengths, each on
its own axis, are named sub-tangents and sub-normals.

The following table needs no explanation :

2
a

X-subtangent = — — 2, =
xy Ly

ﬂgﬂ'—ﬂflg as
iy L - - o R 3 ]_

2 & o
Y‘*E“htﬂﬂgent - _E-)._ — Y= b. - I - :t bgﬂf-'l

xy 2
L n a’yy ; (2)



TANGENT AND NORMAL.

/3

N-subnormal = 2, — a’ :F" i
2 bﬂ
Y-subnormal =y, — ©F
h T
4., 2
Sungent = {4 Sy
_ % B
6;1:1

Y-tangent = { 24— e ;1:, 2t F:

a*y,®
_m .
ay,
b 3
X-normal == {3}: +~;a:1 }
b !
=05

b'.

—
—_—

at I a
Y-normal = { ,* +F " } - {
%
b

= —x;

yl-_- i bgyli

i a? i
_m{?mlﬂ'["iﬁtflg}

'f"‘—:fl

135

)

(4)

()

(6)

)

=1

(

(8)
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Hence these results are evident :

(1) Product of ST’s = product of SN’s = product of Cds.
of point of touch.

(2) Product of T’s = product of N’s = squared half-diam-
eter || to tangent.

(3) Product of X- resp. Y-normal by central distance of tan-
gent = b’ resp. a’.

113. As the tangent is but a special case of the polar, so
the normal may be subsumed under the more general concept
of a L through the pole to the polar. In lien of a better, give
this L the name Perpolar. Since the Eq. of the polar has
the same form as that of the tangent, the Eq. of the per-
polar has the same form as that of the normal. As the pole
glides along a RL., the polar turns about (envelopes, en-
wraps) a point; but in the Eq. of the perpolar, which may be
written

a’yx F Yoy = (a* F U)oy,

the parameters z,, 7, do nof appear linearly; hence, when con-
nected by some linear relation, it will not in general be possible
to eliminate one from the Eq. of the perpolar and leave the
other in first degree only; i.e., as the pole (&, 7,) glides along
a RL., the perpolar will not in general turn about a point,
but about some curve. But in fhree cases it is possible : when
x, is constant, when ¥, is constant, when #,:2;, is constant;
i.e., when the pole moves on ¢ RL. || to either axis or through
the centre, the perpolar turns about a point, the perpole of the
RL.
If the RL. be || to the Y-axis, x; is constant, and the pole of
the RL is on the X-axis, distant a®:z, from the centre; then
the perpole is also on the X-axis, distant ex; from the centre.
(This is seen at once on writing the Eq. of the perpolar
thus :
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T Vo + (e’ — o F b'x)). For z, constant, this is the Eq.
of a pencil of RLs. whose base-lines are y=0, Ii.e., the

Ll
X-axis, and @z — (@ F V), =0, ie., z=—""—x=¢€;

.*. the perpole is [€*z), 0]). The product of these two central
distances is the constant a’¢®; hence, poles and perpoles of IR Ls.
| to the Y-axis form an involution of points on the X-axis,
whose centre is the centre of the conic, whose foei are distant ae
from the centre.

Likewise it is proved that poles and perpoles of RLs. || to
the X-axis are in involution on the Y-axis, but the constant
product of distances of a pair from the centre is — a’¢®. Ilence
if either pair of foci are real, the other are imaginary.

The student will readily see that poles and perpoles of all
RLs. through the centre lic on the RL. at oo.

114. The foci of the involutions on the axes are called foei
of the curve; hence a centric conic has four foci: two real, two
wmaginary. They enjoy important properties.

The central distance, ae, of a real focus is called the linear
eccentricity of the conic; e itself is the eccentricity proper. It
is the ratio of the central distance of a focus to the half-axis on
which the focus lies. Now in case of the imaginary focus the
central distance of the focus is imaginary in both £ and H; but
the half-axis is real in £ and imaginary in H; hence their quo-
tient is imaginary in £ but real in #; i.e., one eccentricity is real,
one tmaginary in E, both are real in H.

The polar of a focus is called a Directrix. Suppose the real
foci (ae, 0), (— ae, 0) on the X-axis; the directrices are

B==f =,
e

By Art. 113 a focus is a double point in which have fallen
together pole and perpole of a certain RL., the directrix. Asa
pole glides along this directrix, both its polar and its perpolar
turn about the focus always L to each other.
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Call the tract from a focus to a point a focal radius of that
point, and any RL. through a focus a jfocal chord. From auy
point ' of the directrix draw a
chord cutting the conic at 7 and I';
to the pole @ of this chord, and
from the focus F, draw F@Q cut-
ting the chord at P. Dy Art. 71,
since the polar of P' is FQ, F,
I'y P, I form an harmonic range;
hence F{P'I'PP1{ is an harmonic
pencil. But FF'is clearly the per-
polar of /', as this perpolar must
go through P and through F.
Hence FPand FI” are 1 ; hence
they halve the Xs of FI and FI'(Art. 41). Ilence, the
focal radius of the pole of a chord halves the X at the jfocus
subtended by the chord.

115. By Art. 113 polar and perpolar cut the axis of involu-
tion in a pair of conjugate points, harmonic with the foci; hence
the focal radii of the intersection of polar and perpolar form
with these two an harmonic pencil ; and since these two are L,
they halve the angles between the focal radii.

When polar and perpolar are tangent and normal, their inter-
section is the pole, the point of tangence on the conic; hence
tangent and normal halve the s of the focal radii of the point of
touch.

The normal halves the inner resp. outer X in the E resp. #;
hence an E and an H with the same foci, i.e., confocal, are L to
each other.

116. These relations of position imply several relations of
size : the intercept between the foci being 2 ae, the X-intercept
of the normal being €’z (Art. 112), the segments of the focal
intercept are «e+ €’r,, ae — €’x, in E, where the normal cuts it
innerly, and €%z, + ae, €x, — ae in H, where the normal cuts it

outerly.
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Hence, as the focal radii r, #' are proportional to thesc
scgments,

r a4 ex . r  ex+a .
T B o e £, and -+ = it o in the 4 ;

U — ex, ' exy—a

& r -
. r4r 262, .
or ——- ==—— in the E, and ax j=-~-—l in the H.
r—1r  2ex r—i 2a

But, plainly,
r? — 1% = (ae+ 2))° — (ae — ) = 4 aex,
or (r+r)(r—7r)=2a-2ex;
hence r+7r'=2a, r—1r'=2er, r=a+ecx,, r=a—ex,
= — e = D"
resp. r+r'=2ex, r—r'=2a, r=ex,+a, r'=ex,—a,

Or, in the E resp. H, the sum vesp. difference of the focal radii
of a point is a constant, namely, the major resp. real axis; and
in both E and H the product of the focal radii of a point is the

squared half-diameter conjugate to the diameter through the point.

The distance of (z;,%,) on the £ from the directrix =z =§

. (t . ;
is clearly Pt and the distance of the same point from the

focus is @ — ex,; i.e., in the E the ratio of the distances of a point
Sroin focus and directrix is a constant, the eccentricity. Plainly
the like holds for the H. 1In E this ratio is < 1, in H it is > 1.

Let the student show that the locus of a point the sum resp.
difference of whose distances from two fixed points is constant
is an £ resp. H; also, the locus of a point the ratio of whose
distances from a fixed point and a fixed RL. is a constant
< 1 resp. >11is an E resp. H.

The sum resp. difference of the focal Ls on a tangent is twice

the central L on the tangent; i.e., it is E”'E’ﬁ the sum resp.

difference of the focal radii is 2 a; also, the ratio of focal L
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to focal radius is the same for the two foci, being the sine of

the slope of radius to tangent; hence this ratio, this sine is 5

Dividing the central L on the fangent by this ratio, we get
the central distance to a tangent, measured || to a focal radius
to the point of touch, namely, «. Hence the locus of the section
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of a tangent and a diameter || to a focal radius to the point of
touch is the major circle. 'The same major circle is the locus of
the foot of the focal L on the tangent; for the As PF'N,
OF _ . F"N= ae — e°x, _
oM F'P  a—ex

€.

MOF are similar, since and

Asymptotic Properties.

117. Thus far the properties of £ and H have corresponded ;
but the asymptotic properties of the H have no reul correspon-
dents in the £, as the asymptotes of the £ are imaginary.
Accordingly, in what follows, reference is to the A alone.

If i’; — f—: =1 be the H, 5 — -g% =0 .m'e its asymptotes.

One of these, 3‘:7— %{-mﬂ, or E:%:_, is clearly the
central diagonal of the parallelogram of the conjugate half-
diameters a', b'; the other is the central || to the other
diagmml, —3’}+ %: 1.

Hence, given a pair of conjugate diameters, we can find the
asymptotes; or, given the asymplotes, we can find the conjugate
to any given diameter.
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I r

By Art. 42 the RLs. =0, y=0; y:i'»:c, Yy=——u,
@ a

i.e., the asymploles and any pair of conjugate diameters form
an harmonic pencil.* Hence the asymptotic intercept of a || to
any diameter is halved by its conjugate diameter, and the inter-
cept between two conjugate diameters of a || to one asymptote
is halved by the other. As a special case, the asymptotic inter-
cept of a tangent is halved at the point of tangence.

Since the same conjugate diameter that halves the intercept
between the asvmptotes also halves the chord of the curve,
clearly the intercepts between the asymptotes and curve are =, or,

CS=(C"§".

From the Eqgs. of the curve and the asymptotes there follows :

f
Yo=mI =m8' = -273,

b' :
h=mC=mC'=_; V&t —u”;

.‘-J.,—Ef,u=03=0'8’=b’{—£r—- ]E‘:%-—l } '

e ——

ml-f
u"-’_l}’

L
v+ m=0S'=C'S =’} -;L+\]

C.O08-08'=0'S'- 0'S ="

i.e., the product of the distances of any point of an H to the asymp-
totes, in any direction, equals the squared || half-diameters of the
H. Clearly C'S can be made large, and so C'S’ small, at will.

118. The tangent-intercept between the asymptotes 771"
being halved at the point of touch A', the A TOT"' = 2 TOA'=
the parallelogram A'OB'T of the conjugate half-diameters, «'

* Hence conjugate diameters form an Involution of which the asymptotes
are the double or focal rays. Like may be casily proved of the conjugate
diameters and imaginary asymptotes of the £ by noting Art. 107 and form-
ing the Determinant of Art. 47,
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and V', i.e., = the constant @b. From A’ draw to each asymp-
tote a || to the other, and call them » and v; they are the Cds.
of A', the asymptotes being axes. With the asymptotes they
form a parallelogram which is clearly half the A TOT"; hence,
if ¢ be the 2 of the asymptotes, we have wvsingd=ab:2
But by Art. 111, since the asymptotes of H fall on the equi-
conjugate diameters of E,

8in ¢ = ——— ;

2ab ., @4V
a- + UF o 4

This, the Eq. of the H referred to its asymptotes, says the
parallelogram of asymptotic Cds. of a point is of constant

are:.
Foeal Ls on the asymptotes are clearly equal ; the asymptotes

being tangents, their product is — b* (Art. 112) ; hence each is
b in length, but they are counter-directed. This is also plain at
once from trigonometric considerations.

Polar Equation of Centric Coniec.

119. Take the right focus as pole, the right X-direction as
polar axis; then, by Art. 116, p=a—ex, resp. p=ex—a
in E resp. H; 2 being here reckoned from the centre,

x=qae-+pcosb;

1 — e —_—

hence ol ~—--—,1 e cos ¢

o= 14+ecosfd a e
2

resp. p L Lt 3 B :1—ecosé.

l—embfi u,

The expressions for the right focal radius being unlike in £
and A, we might have expected these Egs. of £ and H to turn
out unlike. This makes the Eqs. just found unhandy. But the
one expression for the left focal radius is p=a + ex.
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The left X-direction being taken as polar axis and 6 reckoned
clockwise being taken as positive, we have x=—(ae+pcoséd);

2 S —
= M:iﬁ :14ecosf in E resp. H.
1 +ecosd @
These Eqs. of £ and H, like the central Eqs., differ only in
2 2
the sign of ¥*. For B=% or io’:z—’r, p= =% —zu Hence %El is

the focal chord L to the axis; it is called the parameter or latus
rectum.

It is interesting to trace the curve from the polar Eq.

The corresponding values of p are unlike-signed in £ and ¥ ;
in E p is measured bounding the X 6, in H it is measured counter
as long as p falls out negative. The value of e is not the same
in the two Eqs.; in £ it is < 1, hence the divisor 1 4 e coséd
remains throughout + and finite ; but not so in #.

For 6#=0, p=a—ae; inE thisis 4+, butin # it is — ;
hence it is reckoned leftward in E, rightward in #. As 6

increases to ms‘l(_ -1), p traces out (by its end) the lefl lower
€

branch of #. For 6 =cos™' _13 , p= — 0, and is drawn in

the left lower asymptotic direction. Just here p changes sign,
and beginning at + o, traces out the right upper branch of H
till @=m, when p sinks to a4 ae at the right vertex;
thence staying 4, it rises to 4 oo, tracing out the lower right

branch of H till § reaches = + cos’ ‘é. Here again p changes

sign, becoming — <, and as ¢ increases to 2, it traces out the
left upper branch of H, reaching the lefl vertex as it reaches 2 .
The student himself may readily follow the course in the £.

It is noteworthy that the right upper branch of H is thus seen
to be continuous (in o« ) with the left lower, and the right lower
with the left upper. We are forced to think the 4 thus by this
reasoning also: The asymptote touches the H at «w in two
counter directions: hence unless it meets each branch in the
same two consecutive points at «, it must meet A in four points,
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which is impossible. While, then, to imagination the H con-
sists of two distinet branches, to reason it consists of one
branch closed in two directions (the asymptotic) at oc.

Non-Centric Conic: Parabola.

120. By referring P to a diameter and the tangent through
its end as X- and Y-axes, its Eq. is brought to the simplest

form, e d gl (Art. 100).

One and only one diameter is L to its conjugates (Art. 94) ;
it is called principal diameter or axis of P. The Eq. of P
referred to these Ls is called the vertical Eq. of P, the origin
being the wertex, and is written *=4qx; 4¢'is called par-
ameter of the corresponding diameter, 4 ¢ is principal parameter,
or simply parameter. From these Eqs. we may now draw out
all the properties of the P, as is done in most texts ; but another
method seems directer.

According as W —kjis <0, =0, >0, theconicis £, P, H.
Hence, any two of the symbols &, &, j being held fast, as the
other changes, the conic becomes in turn an £ of this or that
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shape, a P, and an H of this or that shape. P is .thus seen to
be a critical curve between E’s and H's, a border or limit of the
two. What kind of a limit, we shall see.

For this investigation of the relation of P to £ on one hand
and H on the other, the central Eq. of £ and H is ill suited, as
the central Eq. of P is unmanageable, the centre being at oo.
Since the vertical is the simplest Eq. of P, let us move the
origin to (say) the left vertex in £ and #. The Eq. becomes

x—a , o g .h
- +< =1 or =
a® i 4 (o

(2ax — 7).

uF
=

Here k= :l:é;:, h=0, j=1; hence, if either £ or H
a

i

is to pass over into P, % must vanish to make &*—Z%ji=0;
a

]

and 2y must stay finite to make the Eq. »*=4¢gr. Now

da
2
20 or 4 ¢ is the focal chord L to the axis; hence & or 2q is
a a

the ordinate at the focus, y,, and ;
7
or distance of the focus from the vertex. Accordingly, we keep

o

e

or ¢ is the focal abscissa 2,

i-} -
m'{bg finite by holding the focus and vertex fixed; to make ‘.?E
{ a

vanish, we must let a increase toward = ; i.e., let the centre,
and with it the other focus, retire to o. But then

=1lF—=1, or é&=1.

Hence we may treat P as an E (or H) whose parameter has
kept constant while its centre and one focus have retired to «, or
as an E (or H) whose eccentricity has increased (or decreased) to
1. The properties of P are the properties of £ (or H) at this
limit. viz. :

121. P is symmetric as to its axis (Art. 104).
P is the locus of a point equidistant from focus and directriz.
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The vertex (origin) is distant ¢ from the directrix; hence any
point (ay, y,) of P is distant x, + ¢ from jfocus and from direc-
trix.

The poles of all || chords lie on the diameter of those chords
(Art. 98). Also a pole P, the intersection M of its polar and the
diameter through it, and the intersections I, I' of the diameter
and the curve, form an harmonic range ; and as I' is at o, 7 is
midway between P and M; i.e., the intercept on « diameter
between a pole and its polar is halved by the curve P.

If the diameter be the axis, [ is the vertex, and the inter-
cept is the subtangent; i.e., the subfangent s halved at the
vertex.

Hence the subtangent is 2 #' long ; also it is cut by the focus
into scgments @, + g and @, — q. Hence the focal distance of the
intersection of tangent and X-axis (axis of P) = the jfocal dis-
tance of the point of tangence = a; + q.

N

Hence the focal L on the tangent halves the tangent-length ;
so too does the vertical tangent ; hence the locus of the joot of
the foeal L on the tangent i3 the vertical tangent.

I'urther, clearly the focus halves the distance between the
intersections of tangent and normal with the axis; hence the
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whole intercept is 2(x;, 4 ¢) ; on taking .away the subtangent
2 a; there remains the subnormal = 2 ¢ ; i.e., the subnormal in
P is the constant half-parameter. |

Plainly a circle about the focus and through the point of touch
goes also through the intersections of tangent and normal with
the axis.

Polar and perpolar and focal rays through their intersection
form an harmonic pencil (Art. 114). The second focus being
at, oo, the second focal ray is the diameter through the intersecc-
tion. Hence any polar and perpolar halve the Xs between the
focal ray and the diameter through their intersection. As a
special case, the fangent and normal halve the Xs between the
Jocal ray and the diameter through any point of a P. Henee, too,
since the diameter meets the axis at oc, the focus halves the
axial intercept between the conjugates: polar and perpolar, or
specially, fangent and normal. This has already been proved
geometrically in the special case.

122. All these relations are readily drawn out from the Eqs.
of tangent and normal :

yh=2¢q(x+x) and (y—m)29+n(z—ax)=0,

a useful exercise left for the student. Eliminating 2, by the
relation y*=4¢x, we get

Wy ; Y,"
g =2¢r+"  and (?;-m):?qvl-m(zui"j?):&

Solved as to 7, x and 7 being treated as known, these Egs.
vield fwo resp. three roots, values of y, i.e., ordinates of the
points where tangents resp. normals drawn through (z, y) meet
the P ; hence, through any point may be drawn fwo tangents and
three normals to P.. The tangents are real and separate, real
and coincident, or imaginary, according as

Y¥—4dgris >0, =0, or < 0;

i.e., according as the point from which they are drawn be with-
out, wpon, or within the P. The sum of the roots is 2y ; i.e.,
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the ordinate of the point through which the tangents are drawn
is the half-sum of the ordinates of the points of touch; i.e., the
point is on the diameter of the chord of contact, as already
known.

The reduced Eq. of the normal is

wH+4q2q—2)yn—8q¢y=0.

The absence of the term in 7, shows that its coeflicient, the
sum of the roots, vanishes; or, '+ »"+»""'=0; i.e.,
the sum of the ordinates of the points where three normals to a P,
throwgh a point, meet the P is 0; or each is the negative sum of
the other two. The sum of the ordinates of the ends of ||
chords is constant, namely, the double ordinate of their diam-
eter ; hence all third normals through the intersections of pairs
of normals at the ends of || chords cut the P at points hav-
ing the same ¥, i.e., at the same point; i.e., are the same
normal ; i.e., pairs of normals at the ends of || chords meet on
¢« third normal. To find this normal, draw one of the || chords
through the vertex; then the point symmetric as to the axis
with the other end of the chord is the point of P through which
the third normal goes.

One of the normals is always real, wherever (z, 7) be taken;
the other two are real and separate, real and coincident, or
imaginary, according as ¥ —4qr<0, =0, or >0; ie.,
according as the point they are drawn from is within, upon, or
without the P. This is also clear geometrically, since plainly
real intersections of normals take place only within the
curve.

123. In the vertical Eq. of P, #*=4qz, the principal
parameter 4 ¢ is the double focal ordinate, or focal chord. In
the Eq., #*=4q'z, of P referred to any diameter and the
tangent at its end, on putting x=4¢', the parameter 4¢
also appears as a double ordinate ; but is it also a focal chord?

Be p the focal ray to the origin or point of tangence, O, o the
tangent’s slope to the axis, p' the focal ray || to the tangent
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and sloped o, p'" the counter-ray sloped 7= + ; then p= :1-;'—[— -,
ge=2a: 1 — cos o, pl=2¢g: 1+ cosm, p'+p'=4q: Sinw .

The second Eq. is got from the polar Eq. of the £ by putting
e=1, 6@==w—w; the third from the sccond by putting
7 + o for o. Clearly p' 4+ p" or 4 ¢: sinw is the foeal chord || to
the tangent ; the « of this chord is the foeal distance of the inter-
section of tangent and axis, i.c., the focal distance of the point of

et

tangence, i.e., p. Now project p on the focal L to the tangent,
and project this projection on the axis; by Art. 121 the last pro-
jection is ¢ ; i.e., p=¢:sinw; .. 4p=p'+p'"="focal chord.
Hence the abscissa to the focal ordinate is half that ordinate ;
but this is the property of the abscissa ¢'. Hence 4¢'is the
double foeal ordinate, or focal chord, and =4¢: sin @ , where
w is the axial angle or slope of the tangent.
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CHAPTER VI

SPECIAL METHODS AND PROBLEMS.

Magic Equations of Tangents and Normals.

124. Thus far the Eq. of the tangent has been expressed
through the Cds. of the point of touch. This Eq. does not in
itself determine the tangent, but only by help of an understood
Eq. of condition declaring the point of touch to be on the curve ;
without this latter, it were the more general kEq. of a polar.

Thus, yy=2q(x;,+«) touches the P y=4gx only
in case (x,7,) be on P, i.e., only in case #°*=4¢qx,; other-
wise, it is but the polar of (x;, %) as to the P y*=4 ga. This
implied Eq. greatly cumbers operations about the tangent.

Where not the point of tangence but only the direction of the
tangent is involved, this cumbrance may be avoided by express-
ing the Eq. of the tangent through the direction-coefficient s as
the parameter of the Eq. This form of the Eq. of the tangent
is called the magic equation of the tangent.

It may be got by putting for y its value sx +d in the general
Eq. of the conic, and expressing the condition of equal roots of
the guadratic in , whence may be found d in terms of s. But
this is tedious. DBetter is it to get the special forms for £, H, P
separately. Thus, after the above substitution in *=4 gz,
the roots are equal when s*d°=(sd—2¢)* orwhen d=gq:s;

B e q
i y_..ﬁ‘ﬂ:—l—g

is the magic Eq. sought; s being thought as changing, it is the
Eq. of a family of RLs. touching the P =4 qu.

In finding the magic Eq. for the £, we may exemplify another
method. Solved as to y the ordinary Eq. is
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2 2
y=_-.£.£3_l.m+_b_
a "
Here 3=_%.ﬂ; ' d=E;
a i
square 3, DIUIﬁPlF bjf ﬂ-E-, add 52; results a2 = s2a? + b4,
Hence y= sz + V5 + b

resp. y = sz tVsa®—b
is the magic Eq. for E resp. H.

N.B. The steps in this elimination are suggested by the
reflection that

a*y® 4 b’ f = o’V
125. Magic Eqs. of normals are easy to find. Thus, in P,
29 2

’ h=— T =

2
o 8
Substitating in the Eq. of the normal

8

1
¥y—uyh= —‘S‘(m'—ml)'r
1
and writing s fo ——, We get as Eq. sought
98¢+ (2¢ —x)s+y=0.
In £, Y = b*: Vsa® + P,
whence o= —sa: VR + b
whence, on substituting as in case of P, there results
(y —s2)* = &(0* — a®)*: (80 + a?)
as Eq. of normal to £.
Changing »* to — b*, we get a like Eq. of normal to H.
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These Eqs. are of fourth degree in s; hence may be drawn
from any point four normals to an £ or an #.

126. The use of the magic Eq. may be illustrated in finding
the locus of the intersection of a pair of L tangents to an £:

y=sxr+Vsa* +b and y=-—1m+\!t§ + A
8
Clear, transpose, square, sum. and divide by 1 4 §*; results

24y =a*+0; or,in case of H, P4 =a—b.

These are named director-cireles of E resp. H. If E and
H be co-axial, the D.C. of each goes through the foci of the

other.
Show that the D.C. of P is the directrix.

The Eeccentric Angle.

127. By Art. 107 the £ g-f—-;’;—i:l is the vertical
shadow or || projection of the circle 2°+43*=a’. 1In this
projection chords || to the plane of the E are projected at full
length, chords L to these are shortened in the ratio b: a, every
other system of || chords are shortened in some ratio between
1 and b:a@. Clearly the centre of the circle is projected into
the centre of the E, hence the diameters of the circle into the
diameters of the E. A pair of L diameters in the circle are
conjugate, each halving all chords || to the other; hence their
projections are conjugate diameters of the E, each halving all
chords || to the other. Call the diameter || to the plane of the
E, which is projected into the axis major of the E, the axis of
the circle ; then the X which any diameter makes with this axis
is called the eccentric angle of the projection of that diameter.
The eccentric 2 of a point of the £ is the eccentric X of the
diameter through it. Hence the eccentric Xs of two conjugate
diameters differ by 90°.
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If the projected circle be turned round its axis through

cos*2, it will fall on the major

circle of the E. If ¢ be the eccen-
tric X of (z,y) on the E, then the ¥
Cds. («', y') of the corresponding
point of the circle are

=acose, Y =asine;
hence  =wcose, ¥y =0bsine
are the Eqs. of the £ in terms of e.

128. The eccentric X is especially useful in dealing with
chords and tangents. Thus the chord through ¢, ¢ is

x Y 1
acose bsineg 1
tCcose bsine 1

=0,

which on reduction takes the form

x ——
—mam-k < sin £'+ f—-cgsﬂ_z_‘?.
a

2 b
Putting ¢ =e=¢ we get the Eq. of the tangent at e:

I
—[LO‘SE-I— ﬁlne—l

Replacing ) and 7, in the Eq. of the normal, we get its Eq.

ux by @ — B

COS ¢ sin q

The advantage of these Eqs. lies in the fact that the arbi-
trary ¢'s are free from condition. We may illustrate their use
in finding the locus of the intersection of the pair of tangents
at the ends of conjugate diameters. Such a pair are

x Y . 1 R 7
—cose+>8ine=1 and — =sin —eose=1.
ek 3k g rones]
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Finding hence cos ¢ and sine, and placing the sum of their
squares equal to 1, we get, on reducing,

LY

2aq2  20°

a co-axial E with axes multiplied by V2.

129. We have seen that equiaxial H is to A in general as the
circle (equiaxial E) is to E in general. Any H may be thought
as a vertical shadow or parallel projection of an cquiaxial H

under cﬂs“:&:{ﬂ,}b). If a<b, we may think the relation
t

reversed : the cquiaxial A the projection of H in general. Now

. 2 2 .
since secy —tany =1, 1If we put =x=asecy., as we
may, we must have y=atany in equiaxial H. or y=btany
in # in general. These, then, are the Egs. of H in terms of 4.

To construct » we have but to form a right A with base a and
hypotenuse x; the 4 at the base will be . This is done by
drawing {rom the end of the abscissa «# a tangent to the major
circle of the H. The tangent-length is the corresponding ¥ in

the equiaxial A and the g’th part of the ¥ in the # in general.
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The equiaxial #' 3" —2"=1, is got by exchanging » and
y in the equiaxial # 2*—3*=1;  hence its Egs. are

x=atany, y=asecy.

In the general A’ L - 1, yis changed in the ratio

b while z is unchanged ; hence the Egs. of it are
L

r=atany, y=>bsecy.

In the equiaxial #’s conjugate diameters are equal and like-
sloped, the one to the X-, the other to the Y-axis; hence the
points corresponding to like values of » in the two pairs of Eqs.
are ends of conjugate diameters; after projection conjugate
diameters remain conjugate, each still halving all chords | to
the other ; hence like values of y yield ends of conjugate diam-
eters in the pairs of general Eqs.

Noting the signs of the trigonometric functions, we see that

n ranging from 0 to % yields all points in the right upper
branches of H and H'; 5 from %— to = yields all points on the

left lower branches of both; % from = to %._,. yiclds all on the

left upper branch of H and the right lower branch of H'; 5
from ?g to 2 = vields all on the right lower branch of # and the
left upper branch of #’. Hence the ends of conjugate diame-
ters, answering to like values of 5, will be in the same quadrant
for » between 0 and =, but in counter-quadrants for » between
= and 27. Observing this, we find as Eqgs. of tangents through
ends of conjugate diameters in first and third quadrants

i 4 - = . sy s
asecq—-ﬁtanq_l, atanq p secn= 13

whence, on addition to eliminate 7, we get
@
¥ 0,

— —

a b
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i.c., one asymptote, as locus of the intersection of the tan-
gents.
Putting = — 5 for » in the second Eq., we get

X Y .
—E_tanq-[-s secy=—1

as Eq. of the tangent through the other end of the second diam-
eter, whence

. ¥
S =0
aT5="
i.e., the second asymptote, results as locus of the intersection.

130. There is another noteworthy way of expressing the Cds.
of a point on an A through a third variable. As the student
may know, sine and cosine may be defined analytically, without
any geometric reference, through exponentials, thus :

cos@=}(e*® +e %), sinf= -271- (e® — e ),
i

where t-1=—1.

All properties of sine and cosine may be drawn out from
these definitions with greater ease and generality than from any
other.

If instead of i be written 1, the resulting expressions
3(e?+e? and (e —e?)

are named vesp. hyperbolic cosine and sine of 6, and may be

written %cd and hsf. We see at once that Jich’ —hst" =1,
and hence we may write in #

1ﬂ.’=:’e_c,:§, fif:ﬂ@, or m=afﬁ§, y:bﬂﬁ,
i

and in H' == ahsb. y:bm; the analogy of which to the
cccentric Eqs. of the E is plain. Hyperbolic functions are of
some use in higher apalysis, and these Eqgs. are of interest in
Kinematic.
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Supplemental Chords.

131. Two chords through a point of an £ or # and the ends
of a diameter are called supplemental. They are || to a pair of
conjugate diameters, for a diameter halving one is clearly || to
the other. Hence, if on any diameter of the conic as a chord be
described a circle-segment containing a given angle, and a point
where this circle-segment cuts the conic be joined to the ends of
the diameter, the diameters || to these chords will be conju-
gate and inclined at the given angle. The problem of drawing
conjugate diameters making a given 2 with each other is thus
solved and soluble only when the circle-segment meets the
conic in recal points. As these points will in general be two,
there are in general two pairs of conjugate diameters having a
given slope to each other.

Auxiliary Circles.

132. Of these have already been found several, as:

(1) and (2), the major and minor circles (Art. 107) ; the
major is the locus of the foot
of the focal L on the tangent
(Art. 116).

(3) The director-circle
x° + y2 = " &+ H*

(+ in E, — in H), being the
locus of the intersection of pairs
of L tangents (Art. 125).

(4) To these we may now
add the two counter-circles. 1If
either focal radius of any point
of an E resp. H be lengthened
resp. shortened by the length of
the other, the point thus reached will clearly lie on a cirele
about the first focus, radius 2a. Since the tangent halves
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the angle of the foeal radii, the point and the other will be
symmetric as to the tangent, or the point will be the counter-
point of that focus as to the tangent. Ilence the locus of the
counter-point of either focus is the counter-circle about the other
focus. Also, the counter-point of either jfocus (as to any tan-
gent), the point of tangence, and the other focus lie on a RL.

() The system of focal circles. Of these the X-axis is the
common power-line, the Y-axis is the centre-line. Any one
meets the tangents through its centre on the vertical tangents (at
the ends of the major or real axis). For in the £ the radius of

such a circle is Va? 4 cote, ¢ being the eccentric X of the
point of tangence of a tangent through its centre; also the
intercept of such a tangent between the vertical tangents is
2V 41 cote. Like reasoning holds for the H, cote chang-

ing to cosecy.
These circles are helpful in problems of construction.

133. In P the minor circle lies wholly in o« ; the major
reduces to the vertical tangent, the locus of the foot of the foeal
L on the tangert (Art. 121) ; the director-circle becomes the
directrixz, the locus of the intersection of pairs of 1 tangents
(Art. 106) ; so, too, does the counter-circle of the focus, since
plainly the counter-points of the jfocus lie on the directriz (Art.
121). All this the student may also prove analytically by pass-
ing to the vertex as origin and reducing the Eqs., remembering
thatin P, a=w, e=]1, %bﬂ =4¢q. The focal circles all
reduce to the axis of P, since the other focus is at oc, and so
are little useful in construction.

Their place is filled in a measure by the circles about As
circumscribed about P, all of which pass through the focus, as
may thus be proved.

Let three tangents touch at Py, I%, P;, and meet by twos at

Iy, 5, I.; by Art. 114,
X PFL=XIFP, nd ¥ PFL=3Y LFP;
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whenece X LFIL = X I,F'P, + X P,FI,
=%¥2P1F-&+13FP2+ PEFL"FLFPS}
=4 X PFPy;

i.e., the intercept of any tangent between two fixed tangents to
P subtends a fixed angle at the focus: half the X subtended by
the chord through the fixed points of tangence. Now as the focal
1 on the tangent meets it on the vertical tangent, the slope of
the L to the axis = the slope of the tangent to the vertical

tangent ; but by Art. 121 the former is half the slope of foeal
radius to the point of tangence ; hence the difference of the slopes
of two fangents to the vertical tangent, i.e., the X between two
tangents, is half the angle between the focal radii to the points of
tangence. On applying this to the case in hand, it appears that
the Xs 51,1, and LFI, are supplementary; hence the circle
about the A L1.I; goes through F'; .e.»v. Circles circumserib-
ing circumscribed As we may name jfocal,

Vertical Equation of the Conic.

134. If x — a resp. x4+ « be put for z in the central Eq. of
the £ resp. H, the reduced Eq. takes the form
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2 2
Y="—.x——-2° resp. yg—?—b- '-‘G-I-—*f

which is therefore the Eq. of the £ resp. # referred to the axis
and the tangent through the left resp. right vertex. If in either
2
we put "'_)E_él q, a= o, we get the vertical Eq. of P
o

y¥=4qgx. Now4dqor g:: is the parameter or double ordinate
through the focus; hence these Egs. state the geometric fact
that the square of the ordinate, as compared with the rectangle of
parameter and abscissa, shows: in the Ellipse, lack; in the
Parabola, likeness; in the Hyperbola, excess. From this fact
the curves seem to have been named. Hence the Eq. of any
conic may be brought into the form = Rz + S2?, where
Sis < 0, =0, > 0 resp. for E, P, H resp.

Liengths of Tangents from a Point to a Conic.

135. These have been found to vary as the || diameters in
the centric conie (Art. 101). In the P be Py(x, 1y), Pol(2a ¥s)
the points of tangence, ¢, ¢, the tangent-lengths. The< the Cds.
of the intersection of the tangents are:

s -
==V, =dl L I2.
iy ey Y >
i.e., are the geometric resp. arithmetic means of the Cds. of the
points of tangence. Hence, p, and p, being the focal radii,

tlg=ﬂs-—yf+yz~yf, n Yo (1_,__m_:>
4 4 44 4 q

_?2
=".y.‘?___'it_(zl+{})— —% -1}

4q 4q
80 t2==1&—_'—‘??{'l'-' 5 3 -i-tg:tnﬂ= : i
2 4@' Fa 1 2 P1 = Pay

e., the squared tangent-lengths from a point to a P vary as the
Jocal radii to the points of tangence.
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Areas of Segments and Sectors of a Conic.

136. By Art. 107 the area of an £ is to the area of its major
circle as b to a, chords L to the axis major being all in this
ratio. It is also clear that any segment of the £ is to the corre-
sponding segment of the circle as b to «, and the same holds
equally of half-segments reckoned from the axis major.

Two corresponding sectors AOP, AOP' are made up of two

half-segments in the ratio b: a,

2 and two A in the same ratio:

P! hence are themselves in that

ratio. So, too, are any other

corresponding sectors .A40Q,

A A AO0OQ ; hence so, too, are their
o differences ’0Q, P'OQ'.

3 Since the centric X AOP or

¢ and the eccentric ¢ or AOP’

are connected by the relation

Q

y:m=tanqb=§-tuns, if the

sector be given by its centric 2, we may still use the
eccentric.

The area of any focal sector PFQ is the difference of the
focal sectors AFQ and AFP, each of which is, again, the dif-
ference of a central sector and a A.

137. In P be P, P any two points, I, the pole of PP/, M,
the mid-point. Then the RL. I, M, is a diameter, the tract I,M, is
halved by P at T), the tangent at T, is || to P/, and halves
the tangents from I, at L, I,). The As I,L1' and T,P,P,' have
equal altitudes ; the base and therefore the area of the second is
twice that of the first. We may proceed with the As T\LFP,,
T\L'P" exactly as with P, I, P/, cutting off by mid-tangents at
T,, T.' outer areas and by chords to 7%, 7.’ inner areas twice as
large; and so on without end. The limit of the sum of the
outer areas is the outer sector P, I, P/, and the limit of the sum
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of the inner areas is the inner parabolic segment P, T, P/, cut
off by the chord P, P,'; hence this latter is twice the former, or
% of the A P L P/, or % of
the parallelogram 72, of the
chord and the || tangent.
The focal sector from the
vertex V to the point P(x,y)

Is

Fay— L (z— )y,

or lay+Lqy.

If the axis and the diameter "
through £ cut the directrix
at [)' and D, the area VD'DP
is 4oy + qy, i.e., twice the
area of the focal sector.
Hence, any focal sector PFP
is half the area of the corre-
sponding outer segment be-
tween the curve and the directrix and the diameters through
o O

138. If through any two points P,, I’ on an A be drawn |s
to either asymptote, meeting the other at X, X,, then P X, X, P,
is called an hyperbolic segment cor-
responding to the hyperbolic sector
P,OP,. The A P,0X,, P,OX, are
equal, being halves of equal parallel-
ograms (Art. 118); taking each in
turn from the figure P,OX,P,, we get
in turn P, X,X,P, and P,0X,; hence,
corresponding hyperbolic sector and
segment are equal,

If P, @, and P, Q, be ends of two
I chords, the sectors P,0F, and @,00, are equal ; for the con-
jugate diameter of the chords halves both the triangular and
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hyperbolic areas, halving every element of each: taking away
equals from equals, we have left the sectors, and therefore their
corresponding segments, equal.

If y=sx+b Dbe any chord referred to the asymptotes,
then the roots z,, 2, of the Eq. ay=s2’+br=«" are the a’s

ol
of the ends of the chord ; their product, T , is independent of
8

b, i.e., is the same for all || chords. When the product of the
Z's is constant, so is the product of the y’s by virtue of the rela-
tion ay =" Hence either set of asymptotic Cds. of the
ends of two || chords form a geometric progression. Plainly
the converse holds: if any number of like asymptotic Cds.,
x’s or ¥'s, be taken in geometric progression, they will belong
to the ends of || chords, and hence the area of sector or seg-
ment determined by any two consecutive ones will be constant.

Take now the hyperbolic segment between the ordinates
y=« and y=a intheH 2ay=4’
and cut it into n equal sub-segments by
ordinates in geometric progression. If r be
the ratio, then a=7r"«, and r= (’E.*):l:

K

The end-absciss® are z=«, = —= The

I sides of the first segment are « and 7« ;

its base is %—-x; its area, if ¢ be the

asymptotic angle, is < « (-’f--r n) sin ¢.
"

‘and > rx (“:T = x) sin¢. Hence the area S

of the whole segment lies between

x’ain-;&n(—:_—-l) and «*sinén(l—r).

The ratio of these extremes is r; if n be taken ever greater and
greater,  nears 1, the extremes near each other, keeping S
always between them; hence S is the common limit which they
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both near as n increases without limit. We can readily evalu-

1
ate n(1 —r) or m { 1— (E).; for » nearing oo, by expanding

K

K

1 1
(E)E. To do this, we write it ag a binomial, thus : (1 + 2 1).: :
K

as a is < «, ¢ _1is < 1; accordingly, the binomial expansion
K

is applicable, being convergent. On expanding, taking from 1,
and multiplying by n, there results the series,

1
AL 0 n la 2
(- (i
K K 2 «
1_1.!,_2 y 1_1 lF2.1+3 y
1 " (L ’ L] 7n 7 a
_-.--.1 ——l - % #
+ 1-2.3 K + 1-2.3-4 K T }

As n rises above all limit, : sinks below all limit, nears 0,
2

and the numerators become —1, —1.—-2, —1. —2.—3, and
the series becomes

S — — —p |
— { a_ 1o 4 +.1.,E_1 _la_ 4 + .. },
K 2 k 3 x 4 x
which, from Algebra, we know to be the negative of the expan-
sion of the natural logarithm of € when t]-c:—ﬂ-gﬁ, as is the

K K
case here. Hence, at last,

8 = — «?.sin ¢ - nat. lngﬁ, or S=x3$in¢-nat_lgg§.
.9

The area of a segment whose end-ordinates are a and b,
b < a<k,

= 8(a,b)=«"sin ¢ { nat. lc:-g;: — nat. lngi}

= «* 8in ¢ - nat. log%-
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If x be taken as linear unit, and if ¢=90° i.e., if the #
be equilateral, then

8= nat. 1.3%, 8 (a,b) = pat. log%;

i.e., the area of any segment, reckoned from the vertex, is the
natural logarithm of the end-abscissa, and the area of any seg-
ment wholly on one side of the vertex is the natural logarithm
of the ratio of its end-ordinates. Hence natural logarithms

have been called hyperbolic logarithms.
Thus far, segments and sectors lie outside of # ; but problems

about inner ones can now present no difficulty.

Varieties of the Conic.

139. We have found three species of conic: E, P, H, accord-
ingas — Cor ° —Lkjis <0, =0, >0; but of each there are
several varieties, which are now to classify. By Art. 51, on
passing to || axes through a new origin (%, 7,), the new abso-
late term becomes

¢ = (kxy + hy, + g) &, + (hxy + jn + )+ 9o + fin+c.

If the new origin (x,, 7,) be the centre of the conic, the coeffi-

cients of z,, 7, vanish, and the values of z,, ¥, are ik %;
hence,
F C A
d=gmtto=g g+l Gt G=

Hence the Eq. of the centric conic referred to its centre is
ka? + 2 hay +jy’+% = 0.

Now, in the E, Corkj—k*is >0, hence &k and j are like-
signed, hence when A and they (X and j) are unlike-signed the
Eq. is clearly satisfied by real values of « and y, hence the £ is
real ; but when A and they are like-signed the Eq. is satisfied
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by no real values of # and y, hence the £ is imaginary; also
when A=0 no real values satisfy it but the pair (0, 0),
hence the Eq. pictures a pair of imaginary RLs. intersecting in
the origin (1, 7).

In the H, &k and j are unlike-signed and C'< 0; plainly the
Eq. is satisfied by real values of = and y in all cases, but for
A =0 it pictures a pair of RLs. through the origin (&, ¥,).

In case of the non-centric, P, C=0, hence the first three
terms of the general Eq. form a perfect square, and we have

(Vkz £ Vjiy) ' +2g9x+2fy+c=0
Solved as to the parenthesis, this Eq. takes the form

VEk-z+~j J-{-i—:i:-—\/ZGJ:—I{
Vi Vi
Accordingly, the Eq. pictures a real P save when G =0.
Then it pictures two RLs., which are always ||, and are real
and separate, coincident, or imaginary, according as K <0,
=0,0or >0. If j=0, like conclusions hold on changing
G to F and I to J.

Hence the following table :

kA<0 . . . . realellipse.
A=0 . . . . twoimaginary RLs.
kA>0 . . . . imaginary ellipse.

A<0 . . . . real parabola.

A=0 . . : . two parallel RLs.
A>0 . . . . real parabola.
( 1.& < 0 .« .« . real hyperbola.
C<0 . .+ . . tworeal RLs.
}Ls > {J . .+ . . real hyperbola.
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CHAPTER VIL

SPECIAL METHODS AND PROBLEMS (Continued).

Determination and Construction of the Conic.

140. The Eq. of the conic has six constants, but division by
any one reduces the number to five, which are therefore the
independent arbitraries of the Eq. Hence five independent
simple conditions are needed and enough to determine a conie,
since they determine the five arbitraries. Conditions are inde-
pendent when no one can be drawn out from the others, simple
when each fixes but one relation among the arbitraries. Such
are that the conic shall go through certain points or touch cer-
tain RLs. A udtiple condition fixes more than one relation
among the arbitraries. Thus, that the conic touch a certain RI.
at a certain point i8 a double condition, namely, that the conie
pass through two given consecutive points; that the centre be .
(£1,71) 18 a double condition, for it makes

kry+hy4+g=0 and hx,+jy+f=0;

that a given direction be asymptotic is simple, since it fixes one
point at oo, but that a given REL. be an asymptote is double,
since it fixes two points at o ; that a given point be focus is
double, since three tangents besides would determine the conic
by determining three points of the major circle; to give the
direction of an axis is to give a point (at o0 ) in P, or to give

the relation _2h = a constant in £ and H, a simple condition ;

k—j
hence, to gife both axes in position, since this fixes the centre

besides. is to impose a friple condition. A given eccentricity is
in general one simple condition, but if e¢=0, the conic is a
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circle, which implies the two conditions of Art. 58. For exer-
cises, see pp. 210-213.

141. The case of a conic fixed by five points merits special
attention. If the five lie on a RL., that RL. and any other are
the conic; there is a two-fold «o of solutions in pairs of RLs.
If only four lie on a RL., that RL. and any other through the
fifth are the conic; there is a one-fold « of solutions in pairs of
RLs. If only three lie on a RL., that RL. and the RL. through
the other two are the conic; there is but one solution. Thus
far the solutions have been pairs of RLs., since no curve-conie
has three points on a RL. If only two points lie on a RL., the
Eq. of the conic is got by assuming

ko + 2 Ry +jf + 2 gw + 2fy + ¢ =0,

which with five like Egs. got by replacing the current Cds. by
the Cds. of the five points will form a system of six Eqs. homo-
geneous of first degree in the six unknowns, &, &, J, g, f) ¢;
since the absolutes are all 0, the condition of consistence is that
the determinant of the coefficients of the unknowns vanish;
hence that determinant equated to 0 is the Eq. sought. DBut to
avoid the tedium of reducing this determinant, we may proceed
better thus ; ‘

Be L,,=0, I,;=0, Ly=0, Ly=0, L;;=0, Ly=0
the six RLs. fixed by four of the points; to denote that in any
L the current Cds. are replaced by the Cds. of the fifth point,
prefix the superscript 5. Then

LIE‘L34=U and LEB'L*I:I:{]

are a pair of pairs of RLs., i.e., a pair of conics through the
four points; hence  Lyo-Lyy— ALyz- Ly =0 is a conic, being
of second degree, through the four points. If this conic goes
through the fifth point, then  *L,,-%L;, — A%Ly-8L,,=0;
whence finding the value of A and putting it for A in the other
Eq. we get the Eq. of the conic sought. |

Since we can find a fit value of A for any fifth point, it follows
that  L,,-Lss—ALgs- Ly =0  represents a conic passing
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through the four points and any other point. Also a conic
through four points of which no three are on a RL. ean sustain
but one more condition, and A may be taken to satisfy any one
condition ; hence the above Eq. represents the whole system of
conies through four points; and since for any fifth point there
is found but one value of A, it is seen that through five points,
no three of which lie on a RL., one, and only one, conic passes.

142. Two special forms of this Eq. of a system of conics are
specially useful.

(1) Take two of the L’s for axes; then their Egs. are 2= 0,
y=10; the Eqs. of the other two are

lx+my+4+1=0 and l'x4+m'y4+1=0,
and the Eq. of the system is

(lxt+my+1)(l'z4+m'y+1)—Axy=0.
The terms of second degree are

e+ (Im' +U'm — XNyaey + mm'y".

They form a square, i.e., the conic is a P, when, and only
when,

("4 I'm —A) > =4UU'mm'.
This Eq. is of second degree in A ; hence fwo, and only two, of
a system of conics through four points are P's.  The student may
easily investigate the conditions under which the P's are real or
imaginary, separate or coincident.

(2) Takethe Egs. of the RLs. in the N. F., and drop the sec-
ond subseript; then N - N, —AN,- N, = is a conic about
the 4-side whose counter-sides are N, =0, N,=0 and
Ny=0, N;=0. Call the lengths of the sides, i.e., the
chords of the conic, ¢, ¢, ¢, ¢,. From any point P draw rays
Tia Ty T3y T4y to the vertices of the 4-side. Then the double
areas of the As are
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- m . ﬁ
Nycy=r1rg-8in7y, Ny-c3=1y-1;-8inrymy,

. _ gy
NysCg=1y+ 7y 8Ty Ny =10y« 1y 8IDTY ]
g LA . A

sin 7y « 8in 7,7

The right member of this Eq. is the cross-ratio of the
four rays, and the left is constant so long as N, N;: N;- N, is;
i.e., so long as the centre of the pencil, P, is on a conic through
the four points. Hence the cross-ratio of a pencil from any
point of a conic through jfour fixed points of the conic is con-
stant. '

143. If now we take any sixth point on the conic, we shall
have an inscribed 6-side. The sides and vertices numbered 1
and 4, 2 and 5, 3 and 6, i.e., whose numbers differ by 3, are
called counter. Let the Eqs. of the sides of the primary
4-side stand as in Art. 142 ; then the Eq. of the fourth side of
the 6-side, i.e., the side from 4 to 5, will be N;—xN,=0,
since it is a ray of the pencil (N, &,) ; so, too, the sixth side,
from 6 to 1, will have for its Eq. N, —«'N;=0. Since 5 is
on the conic NN, —AN,N, =0, we have

_N_ N

K=—_— =

/NS AR
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hence the ray from 2 to 5 is xN;—AN,=0. By like rea-
soning, the ray from 3 to 6 is 'N;—AN,=0. Hence the
fifth side is the common ray of the two pencils

N, — kN, 4 p(xN, — AN;) =0, N, — ' N, + p'(«'N; — AN;) = 0.

These Eqgs. are the same when p=1:«', p'=1:x; hence
the fifth side is  «xV; — AN, + &V, — k' N;=0. The RL.
througch the intersections of counter sides N, =0 and
N, —xN,=0, N;,=0 and N —&«'N,=0 is the common
ray of the pencils

JNI — T(;Ei —xl ,.) =0, ﬂ.Tl - x'f_"ﬂ .- ?"'N:.j =)

i.e., it is the RL. &NV, — ' N, 4+ ' N; = 0. But this RIL.. goes
through the intersection of the third pair of counter sides
N,=0 and xN, —x'N,+«N,—AN,=<0. Hence we have

Pascal's Theorem. 7The three pairs of counter sides of a 6-side
inscribed in @ conic intersect on a RIL. called a Pascal (RL.).
Since six points may be thought arranged circularly in 5! or
120 ways, and since a ray joining two points may be counted in
two ways, it follows that there are sixty really diflerent orders,
and so sixty really different Pascal RLs.
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Pascal discovered this beautiful relation, and built upon it a
theory of the conic.

144. We have seen (Art. 141) how to form the Eq. of a
conic through five points ; Pascal’s Theorem enables us to con-
struct it without knowing its Eq., and more rapidly than by
Art. 71, thus:

Draw through 5 any RL. ; it will cut the conic in 6; find the
intersections of sides 1 and 4,
2 and 5 (the ray just drawn) ;
through them draw the Pascal
RL.; it will pass through the
intersection of sides 3 and 6
from 1 draw side 6 through
the intersection of the Pascal
and side 3; it will meet side 5
in point 6. So we may find
any number of points of the
conic.

If side 5 be drawn || to side
1, the RL. halving the tracts
12 and 56 will be a diameter of the conic; a second diameter
can be got by drawing side 5 || to side 3; these two diameters
fix the conic’s centre.

If side 5 is to touch the conic at 5, point 6 must fall on 5}
hence, draw side 6 from 1 through 5; through the intersections
of the counter-sides 1 and 4, 3 and 6, draw the Pascal ; it will
cut side 2 in a point of side 5; the RL. through this point and
o will touch the conic at 5. So we may draw any number of
tangents to the conic.

145. We have learned to construct the conic by points and
form its Eq. from given conditions ; it remains to determine its
elements, centre, awxes, foci, directrices, asymptotes, from its Eq.

By Art. 93 the centre is the point (@:C, F': (). If C be
>0 resp. <0, the Cds. are finite, the conic is an E resp. H.
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Transformed to || axes through the centre, the Eq. becomes
?c:c‘“+2fmy+jy”+-z~= 0.
The asvmptotes are now
kx* 4+ 2hay + jyt =0

hence, if we pass back to the old origin and axes, the Eq. of the
asymptotes becomes

Kt 4 2hay +ji + 292+ 2fy + o — 7 =03

i.e., the Egs. of the conic and its asymptotes differ only by the

tant A
constant —
The axes halve the Xs between the asymptotes; hence they
.- __ 4 5]
are the RLs. #*—y*=""7ay by Art. 53. As tan20=_2"
L o

0 being the slope of an axis to the X-axis, we may now find the

; . 2 I
directions of the axes by drawing the RL. y = E-I_“_.z: and halv-

»
—

ing its slope to the X-axis; but to determine the lengths of the
axes is still tedious. A guide to a simpler solution of both
problems in one is the reflection that the diameters of a conie
through its intersections with a concentric circle are equal,
being diameters of the circle, hence are like-sloped to either
axis of the conic; accordingly, when these diameters fall
together, it is on an axis of the conic. Now by Arts. 30, 50

Kot 4 2hay + 4+ B . ZXY_ o
e R

is a pair of RLs. through the intersections of the conic with the
concentric circle «° 4+ 3*=7", and the origin (centre). They
fall together when the Eq. is a square, i.e., when

A : A
k4 — 4+ — \=~FA2
( Cr"“) (? C'r") A
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The roots 7?2, r,* of this Eq. are therefore the squared half-
axes of the comnic; putting them in turn for #* in the Eq. of the
pair and taking the second root, we get the Egs. of the axes.
The axes thus found in size and position, the foci are found by
laying off on the proper axis the proper focal distance,
ae =Va® F °. The directrices are easily constructed as polars
of the foci.

To find the eccentricity, suppose the Iq. of the curve referred
to its axes tohe Ax*4+ By*=1; then, as 4 and B are the
reciprocals of the squared half-axes, we have A= B(1—¢€?).
Now pass back to the original central Eq.

ka® 4 2 hay +jyﬂ+%=0.

By Art. 102, since w = 90°,
A+4+B=~k+j and AB=Fkj—I"
On elimination of 4 and B from the three Eqs., there results

k-4 412
et ( : et—1)=0.
+ kj — R? ( )

This Eq. teaches that there are fwo pairs of counter-eccen-
tricities of a centric conie, corresponding to the two pairs of
foci, one real, one imaginary ; if e e be the squares,

9 k—j)+ 4R
€12+€E-—_—€1EIEEEE—-‘{ kj?}_;:_; .

Hence ;3—15 + eF:IE =1, the sum of the reciprocals of the squared
1 2

eccentricities is 1. Also, if kj — A* > 0, the product of ¢ and e,
is — ; i.e., the squared eccentricities are one 4, one — ; i.e..
in E one pair of eccentricities are real, one imaginary. If
kj — h* < 0, both the sum and the product of the squared
eccentricities are 4 ; hence both squares are -+, hence in #
both pairs of eccentricities are real. The real foci lie on the real
axis, which latter falls on the X- resp. Y-axis when A resp. B
is 4+, and the corresponding squared eccentricity is
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B—A . A—B
resp. — —-

B A

146. The Eq. of P, as the highest terms form a square, may
be written

(kx4+w)*'+2g9gx+2fy 4+ C=0.

The RL. «xx+4+ =0 is a diameter (Art. 97), and the RL.

2gx+2fy+ C'=0 is a tangent at its end, since on combining

the last Eq. with the Eq. of the P there result two equal pairs

of values of x and y, which also satisfy x4 @=0. This

diameter and tangent are not in general L, since not in general

is *’%‘ =— 1. But by adding and subtracting 2\ + 2 A + \?
L

we may write the Eq. of the P thus:
(kx+y+A)+2(g—xMNe+2(f— Ny +c—=A=0.

The RL. xzx+ w4+ A=0 is still a diameter, being | to
x4+ =0, and 2(g—uxA)x42(f—N)y+ec—=A2=0 is the
tangent at its end for the same reason as before; they are L if

o Ll, i.e., when, and only when, A= M
¢t g — KA i

Hence when A has this value, the two RLs. are resp. axis and
vertical tangent of the P, and their intersection is the vertex.

The parameter 4 ¢ is the ratio of the squared distance of a
point of P from the axis to its distance from the vertical tan-
gent ; 1.e.,

(xx + 42 2(g— Nz 4+ 2(f— )y +ec— A2

4qg= ..
P z\f{{;—xh}2+(f_ d)z

_2V (g =)+ (F—A)?

e ;

whence on substitution for A,

_2(xg—1) _2(Vhyg—Vjr).
W+ (k)3

4q
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The exponent § leaves the sign of 4¢ at will, as it should be,
since the + direction of the X-axis is yet at will. The P
clearly lies on the — side of

2(0—xA)x+2(f— M)y +c—A=0.

The focus is on the axis g distant from the vertex; or we
may determine its Cds. by finding the intersection of the tangent
292 +2fy+c=0 and the vertical tangent, and through it
drawing a L to the former, which will cut the axis at the focus.

147. When the elements are found, the curve may be actually
traced by the methods of points, of tangents, or of continuous
motion.

(1) Cut the major axis of an £ anywhere within the foci;
with the two parts as radii draw circles about the foei; each
pair of circles, the sum of whose radii is the axis major, inter-
sect in two points of the £ (Art. 101). Like holds for the H
on changing within to without and sum to difference.

(2) From the end of any radius of the major circle of an £,
drop a L on the axis major; from the intersection of the radius
with the minor circle draw a || to the axis major; it will cut
the L in a point of the £; for it cuts it in the ratio b: a.

From any point on the real axis of an # draw a tangent-
tract to the major circle; also draw a || tangent-tract to the
minor circle ; at the point lay off the equal of the second tan-
gent-tract L to the axis; its end is a point of the #; for the
first tangent-tract is clearly atany, and the second is btany
or .

(3) Through a focus draw chords of the major circle of the
£ resp. H ; through their ends draw _Ls to them ; the _Ls touch £
resp. H ; for the feet of focal Ls on the tangents lie on the
major circle.

(4) Join cross-wise the intersections of a focal circle with the
vertical tangents to an £ resp. H; the junction-lines will touch
the £ resp. H, by Art. 132. -
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By either (3) or (4), more easily by (4), enough tangents
may soon be drawn to shadow forth the curve quite clearly.

(5) If the ends of a string 2 a long be fastened less than 2 @
apart, and it be stretched by a sliding pencil, this will trace an
E whose aris major is the length, whose foci are the ends, of the
string.

(') If the ends of a string he fastened, one at a point, the
other at the end of a ruler 2« longer than the string, and the
string be kept stretched against the ruler by a pencil while the
ruler turns about its other end fastened at a second point more
than 2 @ apart from the first, the pencil-point will move on an #
whose foci are the fixed points and whose real axis is 2 «.

These constructions rest on the same properties as those of
(1).

(6) If one end N of a ruler a long slide on a fixed bar BB'
while a fixed point N' of the
—\P ruler siides along a L bar A1,
the other end F of the ruler will
trace an £ whose axis major is
P c v 2 NP = 2 a, whose axis minor is

/J;' M 2N'P=2b. For draw a circle

with radius a about the cross-

point €, and a radins €' || to

NP. Then MP:MP' =b:a.

The three bars form a pair of
elliptic compasses.

B
F

N

D P % (6" If a ruler RBR' bent at B Sii{lc

along a straight-edge DID' while a pencil-
point P keeps a string BB long stretehed

B against the ruler, one end of the string being
F fastened at R, the other at a fixed point I,
fou then P will trace an A, of which Fis a focus,

DD’ a directrix. BR an asymptotie direction.
IFor the distances of P? from F and DD' are
i clearly in a fixed ratio, namely, sec @, where
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=X RBR'—90°; hence e=secé, % = cosf, and 1::11:»59:'1.:.3

is the slope of an asymptote to the X-axis.
Among constructions of P by points this seems simplest :

(7) About the focus with any radius > g draw a circle ; from
where it cuts the axis lay off 2 ¢ toward the focus; through the
point thus reached draw a L to the axis; it will cut the circle in
points of F’; also the junction-lines of the points of /? and the
other end of the diameter will touch the P (Art. 121).

(8) From the focus draw any ray to the vertical tangent;
through their intersection draw a L to the ray; it will touch P;
also a second focal ray having twice the slope of the first to the
axis will meet the tangent at the point of tangence (Art. 121).

Or, the point of touch may be found by remembering that the
focal L on the tangent halves the tangent-tract from the axis.
Constructions of P by points and by tangents involve each other.

(9) Construction (6') of H will yield P when the ruler is bent
at right angles; for then 6=0, e=1.

Confocal Conics.

148. Conjocal conics are clearly also co-azial, for the foci fix
the axes in position; if 2a, 2 b and 2 «,, 2b, be their axes, then
" — b = a,° — b? = squared central distance of focus.

Conversely, if two conics be co-axial and a®— b =a?— b2,
~ they are ednfocal, the foci clearly falling together.

On transposing, we get o®—a?=5—b?; accordingly we
may put a® 4+ A for «,%, at the same time putting * 4 A for &2

o

a
Hence PRy + Eﬁ?f{- 3 =1 is a family of confocal conics,

2
and all conics confocal with the base conic ﬁ -+ g— =1 are
c -

got by letting A range from — o to + eo.
For — o <A« —a? the conics are imaginary; for A = — a?,
the conic is a pair of RLs. fallen together on the Y-axis; for
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— & <A< —b?, the conics are H's sinking down to the X-axis;
for A= —0"— 0, the conicis the doubly-laid X-axis without
the foci; for A=—b"+0, it is the doubly-laid X-axis
within the foei; for —b*<X\ < =, the conics are E's swelling
out from the X-axis toward the concentrie circle with «= radius.

‘ ; 2’ i - :
The Eq. — +-Y . —1=0 is of second degree in A ;
@+ A A
hence to any pair (x,7) correspond two values of A5 i.e., through
any point in the plane pass two, and only two, confocals. For A

very great and 4, the quadratic is — ; for A nearing — 07, it is

+; for A= —1¥, it springs from 4 o to — o ; for A nearing
— a?, it is again 4 ; for A= —a?% it again springs from + «
to — oo, and thence stays —. Accordingly, the quadratic

changes sign by passing through 0 only for A between 4+ =« and
— ¥, and for A between —&° and — «®; i.e., the two confoeals
which pass through any point are the one an £, the other an 4.

The tangent and normal of the £ halve the outer resp. inner
s of the focal radii to the point, the normal and tangent of the
H halve the same Xs; hence they are the same pair of RLs., the
normal of one curve is the tangent of the other; hence confocals
cut each other, wherever they cut, orthogonally.

149. Confocal curves (and especially confocal surfuces) form
a system of rectung. Cd. lines (and surfuces) of great import to
Higher Geometry and Mechanics. It is in place here only to
show how ordinary Cds. mav be expressed through confocal
Cds. : pairs of values of A yvielding confocals through the point.
z * il 2?
Be -4+——=1 and ———+4 - —=1
at A 4N a4+ Ay, D4 A,
the confocals.
Multiply by the divisors of »* and subtract; there results
e 12 2 ::
F=(h—h) ] SN _TAL
{ o + A @4 Al
(M) (@ 4 X))
- ?

@ — b
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and on exchanging @* and %,

B+ A) (BN,
a® —b*

Hence 2*4+¢¥’=c*+0V+MF+lh=a’4+AF0+A,
=a*+ A+ +A=7.
This r being regarded as a.half-diameter of the confocal A,
its conjugate ' is given by the Eq.
ni=d+N+0+MN=a N+ N
=A— A

and so ' i= Ay — Ay

y¥=—

whence n/'*4 7/ =

i.e., the conjugates to a common diameter of two confocals are
alike in size, one real, one imaginary. Also, by Art. 111, if p,
resp. p, be the central L on the tangent to A, resp. A, || to r)/
resp. 75, or through the end of r, then

{{l-‘+hl'fj‘.+}ll’ and P {I -I"')iﬂ L“I‘Aﬂ
AL — Az Ag— Ay
Thus may all geometric elements of the system of confocals
be expressed through the parameters A;, As, and their relations
studied.

9 __
»m=

Similar Conics.

150. From Art. 82 it is clear that any conic A, similar to the
central conic A must be congruent with some conie K, concen-
tric with ' and similar to it; A, and K, differ only in that K
has been pushed and furned as to K. Since the centres of K
and I, fall together in the centre of similitude, the centres of X
and K} are corresponding points or centres of similarity.

As K, and K, are congruent, in dealing with their metric
relations we may put the one for the other. Now the eccen-
tricity of K is §a® — %: a®}4, that of K, or K, is §a,°— b, LT
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in i and K,, a and a, (or a,;) correspond, so do b and b,;

hence,

St b or -E——-—
b

="
hence the eccentricities of similar conics are equal. Conversely,
& —_ - k)
o {112

by decomposing, we get
a b

)
sy by
or the conies are similar.

Hence eccentricities equal is the necessary and sufficient condi-
tion of similarity in central conics.

As P is simply a central conic whose centre has retired to «
while the parameter has stayed finite, we may at once infer that
all P’s are similar, having the same eccentricity e=1, and all
conics similar to a P are P’s. Or we may place the P’s vertex
on vertex, axis on axis; then their Eqgs. will be y¥*=4qx,
r=4qx; or ;m =4qpcost, p; aimfi‘,2 =4 ¢qp, cos b, ;
hence for @=6,, p:py=q:q; or the P’'s are similar, the ratio
of similitude being the ratio of their parameters.

Since in similar conics the eccentricities are equal, the expres-

sion (2 —¢€*) : 1 — ¢ must be the same in them; hence, by Art.
145, (K +j)*: kj — I* must be constant and equal

ky +Jl: s Eyji— Ry
This, then, is the condition that K and I|, given by their
Eqs., be similar. For oblique axes we must write

k4+j—2hcosw
for k 44, as is plain from Art. 102.

If now K and K, be like-placed, i.e., have corresponding
tracts ||, the Eq. of K, becomes that of K, on change of origin
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only ; by such change k,, A, j; are not changed, hence they are
the same in the Eqs. of K, and K,; but in & and I the inter-
cepts on the axes, origin being at centre, vary inversely as Vk,
vk (or Vk)), VJj, Vji; and since these tracts correspond,
. | )2

k:k=j:5,=17°; and since ;‘_+"}32 is constant, we have also
B =
I, '

In two P’s like-placed, or with || axes, it is plain that

— =1, since each is the squared direction-coefficient of the

axis ; hence in all cases the triple equalit LA - 4 shows
1 y 37573 j
1 1

that the fwo conics are similar and similarly placed.

The Conic as the Projection of a Circle.

151. By Art. 107 the £ is a || projection of a circle, the
only kind of projection yet spoken of. The notion may be
widened thus:

The point P' where any plane II' cuts any ray from S is called
the central projection of any point P of the ray, on the plane. S
is called the centre of projection, II' the plane of projection.
Only when S is at o does central pass over into || projec-
tion.

Rays from § through points on a RL. lie in a plane; hence
their intersections with II' lie on a RL. ; i.e., the projection of «
RL. 7s a RL.

If this RL. cut a plane curve in n points, its projection will
cut the projection of the curve in n points, the projections of the
original n points ; since n fixes the degree of the curve, that
degree is unchanged by projection ; e.g., the projection of a conic
is a conic.

If the points in which the RL. meets the curve be consecu-
tive, so will be their projections ; hence, the projection of a tan-
gent to a curve is tangent to the projection of the curve.
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Hence, too, the projections of pole and polar as to a conic are
pole and polur as to the projection of the conic; also, projections
of conjugates, points or RLs., are conjuguate.

All points of a plane through the centre | to IT', and no
others, are projected into oo ; hence, to project a RL. into <o,
project it on a plane || to the plane througl it and the centre.

A pencil of rays is clearly projected into a pencil of rays,
whose centre is the projection of the centre of the pencil. This
latter projection will be in firity unless the centre lie on a RL.,
the intersection of the projected plane IT and the plane II"
through the centre S, || to II'; then it is in . Ience any
pencil whose centre is on this RL., IL", is projected into a pen-
cil of || RLs. The centres of all such pencils lay on a RL.
hefore projection; hence'they lie on a RL. after projection,
namely, the RL. at <.

The plane I1"" through the centre .S || to IT meets IT in a RL.
at oo, and meets I1' in a RL. in finity, 7'"L'; hence all pencils
of || ELs. in II are projected into pencils of intersecting RLs.
in IT', whose centres lie on the RI1,. I'"L .

152, Since || planes meet a third plane in || RLs., and
since Xs between || pairs of (like-directed) RLs. are equal,
clearly any X in II is protected into equal s on || planes.
Hence, if the sides of any X at A cut IL" at B and C, then the
projection X B'A'C' of X BAC on I1' equals % BSC, the projec-
tion of the same X on II". Hence, to project any X BA,C
into an X a, draw BS and CS making <BSC= Xa,, then
project on any plane | to the plane BSC. This may be done
in an = of ways. If some RL. of the plane of B4, is to he
projected into oc, let it cut the sides of the X at 4, in B,. C\; on
B,C, as chord draw in any plane an arc¢ to contain the given X
c,; the centre § may be taken anywhere on this are, and TI'
may be any plane || to the plane B, SC). If twwo X3 in a plane,
at A, and A,, are to be projected into two given Xs, o, and a,,
while a given RL. in the plane is to be projected into o, con-
struct as before in any plane on B,C, as chord an arc to contain
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a;, and in the same plane on B,(; as chord an arc to contain o, :
the intersection of these arcs determines the centre S, which,
however, may still lie anywhere on the circle of intersection of
the surfaces generated by revolving the arcs about their chords.
The plane of projection II' may be any plane || to the plane
through the centre .S and the given RL.

On this theorem, that any two angles in a plane may be pro-
Jjected into angles given in size and al the same time a given RL.
of the plane projected into o, is based the theory of projections.
An immediate deduction is:

153. Any conic may be projected into a circle and at the same
time any point into the centre of the circle.

_ ~h x: @ @:l/"

Be C' the point to be projected into the centre of the circle.
Let the polars of any two points P, P, on the polar of C as to
the conic cut that polar in @,, Q,; then are P, @, and P, Q,
pairs of conjugate points. By Art. 152 project X P,C'Q, and
X P,CQ, each into a RX and the polar of C into o« ; then is ('
the centre of the projection of the conic (which is itself a conie,
by Art. 151), since its polar is at o« ; also P,/'C', Q,/C" and
P)C'y Q,C" ave two pairs of conjugate diameters at RXs. Hence
the projection is a circle.
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If now we hold the centre of projection fast, and exchange II
and I1', we shall get the correlate theorem :

A circle may be projected into any conie, and at the same
time the centre of the circle into any point of the conie.

The system of rays from S to the points of the cirele form a
circular cone; the projection of the circle on any plane is the
intersection of that cone and the plane; hence, any conic is the
intersection of a plane and a circular cone, and any intersection
of a plane and a circular cone is a conic. Hence the name
conic section or conic.

The student will now readily see that the section of a right
circular eone is a circle when the cutting plane is L to the axis
of the cone ; as the plane turns, the section passes over into an
E with increasing eccentricity till the plane gets || to the edge
of the cone, when the section becomes a P; as the plane still
turns, the section becomes an H.

Again, if a cirele stand upright on a plane, and a centre of
projection descend toward the plane, the projection of the circle
on the plane will be an £ till the centre reaches the level of the
highest point of the circle, when it becomes a P; as the centre
still descends, the projection becomes an A ; as the centre passes
through the plane, the H shrinks to a pair of RLs. fallen
together, and swells again into an £ as the centre sinks below
the plane.

Properties of a curve not changed by projection are called
projective properties. DBy Art. 41 properties connected with the
cross-ratio are such.  But this thought cannot be followed up
here.
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CHAPTER VIIL

THE CONIC AS ENVELOPE.

The path here struck into leads quickly into the higher regions
of the subject; we can follow it but a few steps, to find out its
general direction.

154. Art. 30 has already introduced a new kind of Cds. In
the Eq. N, +v.N;+1v;N;=0 of a RL. we may treat any
two of the ratios of the three N's to each other as Cds. ; or,
still better, we may treat the N’s themselves as Cds. In this
case the homogeneity of the Eq. in N's shows that the apparent
number of Cds., three, may at once be reduced to the real, two,
by dividing by any one. In faect, if =, 7., 7; be the length of
the sides of the A of reference, it has been shown that the
triangular Cds. of any point are connected by the relation

11N+ 7N+ 7Ny = — 2 4.

Hence, any two of such Cds. being known, the third is
known. Again, any two determine a point., For all points
distant N, from N, =0 lic on a RL. || to it; so all points
distant N, from N,=0 lie on a RL. || to it; and these two
- RLs. meet in one, and only one, point. It is equally clear that
any point determines two Cds., and therewith the third Cd.
‘Thus it is seen that points and triangular Cds. determine each
other exactly as points and Cartesian Cds.

If any two ratios of the N’s be taken as Cds., then are these
Cds. of Oth degree in the N’s, and any combination of them will
still be of Oth degree; hence any Eq. between them will be
homogeneous of Oth degree in N’s, and on multiplication by the
least common multiple of the denominators will remain homoge-
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ncous of some degree. Hence Eqs. in triangular Cds. are
homogeneous.

155. Let us note more closeiy the Eq. of a RL. in triangu-

lar Cds. :
1dVy + vV + v Ny = 0. (L)

It is seen that the +'s enter the Eq. exactly as the N's do.
The significance of this fact is now to be developed.

IHolding the ¢’s fixed and letting the N's vary, we get various
points on the same RL.; the RL. is fixed by fixing the +'s ; any
point on it is then fixed by
fixing the N’s. If, now, we
hold the N’s fixed and let the
v's vary, we shall clearly get
various RLs. through the
same point; the point is
fixed by fixing the N’s; any
RL. through it is then fixed
by fixing the ¢’s. Thus it
seems that the »'s determine
a RL. precisely as the \N's
determine a point.

The N’s determine a point
as being its distances from
three fixed RLs. forming a
A; how do the +'s determine a RI..? This question is easily
answered thus: Take as the fixed point the vertex of the
referee A counter to the side N =0, i.c., the point
(N.=0, N;=0); then Eq. (L) reduces to N, =0.
Now for this point NV, is not =0, hence »,=0; i.e., when
all the RLs. go through the point (N,=0, N;=0), then
for all such RLs. 1, =0. Also, we know from Art. 29,
that if », =0, then all the RLs. given by Eq. (L) go through
the point (N,=0, N;=0). Hence r, must be a factor of. or
proportional to, the distance of the RLs. from the point
(N,=0, N;=0), since when » vanishes, and only then, the
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RLs. go through that point. Hence we may say v =0 s
the Eq. of that point, meaning all RLs. through it are distant
from it 0, just as we say N,=0 is the Eq. of a RL., mean-
ing all points on i are distant from it 0. Likewise 1, =0,
vs=0 are the Eqs. of the other vertices of the A, counter to
the sides whose Eqs. are N,=0, N;=0.

As we say the point (N,, V;), meaning the junction-point of
the RLs. N,=0, N;=0, so we say the RL. (i,, v;), mean-
ing the junction-line of the points v,=10, 1;=0.

Had we not assumed the Eq. of the RLs. in the normal form,
but taken the general form AL, 4+ ALo +A3L;=10, the
reasoning would have remained unchanged. Hence,

Triangular Cds. of a point are (fixed multiples of) its dis-
tances from the three sides of a A.

Triangular Cds. of a RL. are (fixed multiples of) its distances
from the three vertices of « A.

The above interpretation of the +’s is indeed clear from Axrt.
30. Accordingly, Eq. (L) may be interpreted either as the Kg.
of a RL., the +’s being arbitrary and the N’s variable, or as
the Eq. of a point, the N’s being arbitrary and the v’s variable.

The RL. fixed by the v’s chosen at will holds on it every point
whose Cds. (N, N, N;) satisfy the Eq. (L).

The point fixed by the N’s chosen at will holds through it
every RL. whose Cds. (v, v, vs) satisfy the Eq. (L).

The RL. is the locus of the point (N,, N,, N;) ; the point is
the envelope of the RL. (v, vs, v3).

Thus far have been used two sets of symbols N’s and +’s as
Cds. resp. of a point and of a RL.; but that was plainly
unnecessary, since the two sets enter Eq. (L) in the same way.
We might as well say, regarding either set not as Cds., but as
arbitraries, the Eq. (L) is the Eq. of a RL. or of a point,
according as the other set be taken as the triangular Cds. of a

point or of a RL.

156. The picture of an Eq. of higher degree between poini-
Cds. is a locus, the Cds. of each of whose points satisfies the

Eq.
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The picture of an Eq. of higher degree between line-Cds. is
called an Envelope, the Cds. of each of whose RLs. satisfies
the Eq.

What is meant by a point of a curve is well-known ; what is
meant by a RL. of a curve is to be found out.

By heaping together ever thicker and thicker points of a
curve, the curve itself is not made but shadowed forth; so by
heaping together RLs. of an envelope, the envelope is*shad-
owed forth. Let 1, 2, 3 be any three such RLs. whose Cds.
fulfil the Eq. of the envelope.
Hold 1 fixed, and let 2 turn
toward 1, its Cds. all the while
fulfilling the Eq.; its section-
point with 1 will move along 1,
and will be definite for every
position of 2; as 2 falls upon 1,
becomes coincident with 1, it is
named consecutive with 1, and
its section-point with 1 is named
a point of the envelope. 'The
student will see at once that this
reasoning is quite parallel to that in Art. 64. If now we let 3
turn toward 1, its Cds. all the while fulfilling the Eq., its section
with 2, as it falls on 2, will be another point of the envelope ;
these two section-points (1, 2) and (2, 3) are plainly consecu-
tive points of the envelope ; hence 2, which goes through both,
is a fangent to the envelope. Hence a RL. of an envelope is a
tangent to it; and on this account the Cds. of the RL. are com-
monly called the tangential Cds. of the envelope or curve.

157. It is now easy to see the meaning of the degree of a tan-
gential Eq. The point-Eq. (i.e., the Eq. in point-Cds.) of a RL.
being of first degree, for a point-Eg. of a curve to be of nth
degree meant there were n points common to the curve and a
RL. ; so, the tangential Eq. of a point being of first degree, for
a langential Eq. of an envelope to be of nth degree meauns there
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are » RLs. common to the envelope and a point; i.e., through
a point may be drawn n tangents to the envelope. Such an
envelope or curve is said to be of nth class.

Again, the condition that a RL. should touch a curve was
that on combining the two point-Egs., two sets of point-Cds.
should fall out equal, two common points be consecutive; so, the
condition that a point shall be on an envelope is that, on com-
bining the Eqgs., two sets of line-Cds. shall fall out equal, two
common RLs. be consecutive.

This furnishes a general method of mterchangmg point-Eqgs.
and tangential Eqs. Combine the point-Eq. (L) of a RL. with
the point-Eq. of any curve; express the condition that two roots
of the resulting Eq. be equal ; the Eq. which states this condi-
tion states that the RL. whose Eq. is (L) touches the curve;
hence it is the tangential Eq. sought. In it the parameters
(or v’s) in (L) are tangential Cds. Likewise, combine the tan-
gential Eq. (L) of a point with the tangential Eq. of a curve;
express $he condition that two roots of the resulting Eq. be equal;
the Eq. which states this condition states that the point whose
Eq. is (L) is on the curve; hence it is the point-Eq. sought.
In it the parameters (or N'’s) in (L) are point-Cds.

Note that the analytic work in both cases is the same.

158. For the curve of second degree a more elegant method
is this:

Common Cartesian Eqs. may be made homogeneous by
replacing  and y by z:2 and ¥:2, which plainly we may do,
and then multiplying by z. The Eq. of a RL. becomes

le+my+nz=20

the Eq. of a conic and the tangent to it at (x,, ¥,, 7)) become
ka 4+ 2 hay 4 jy* + 2gxz + 2 fyz 4 ¢z =0,

(kzy + by + g21) @ + (R, + jyy + 1) y
+ (g2 4+ fun + ¢2)2=0.
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If the RL. be a tangent, then the first and third of these Eqs.
can differ only by a constant factor p; hence
kx4 hon + g2 — wl =0,
hay + jyy + fo — pm = 0,
gz, + fih + ez —pn=0.
Also, as the point (z,, ¥;, ;) is on the tangent, the Eq. holds :
lx, + my, + nz, = 0.

The condition that these four Eqs. between z,, ¥,, 2, consist,
is

h j f m
g f ¢ n
I m n 0
or RP+2HIm + Jni* 4 2GIn 4 2Fmn 4+ Cn* = 0.

Such, then, is the tangential Eq. of the curve of second degree.
The tangential Cds. are [, m, n, which are to be interpreted like
the +'s, while the capitals are, as always, the co-factors of the
like small letters in the discriminant A. The relation of the
above determinant to A is to be carefully noted.

From this tangential Eq. the original point-Eq. is now to be
got exactly as this tangential Eq. was got from the original
point-Eq. : I, m, n will change back into x, y,z, while the capi-
tals will change into their own co-factors in the discriminant

| KJC| of this Eq. The result can differ from the original Eq.
by a constant factor only, by which we may divide. This factor

itself is readily found thus :
Call the co-factors of I, H, ete., k', h', ete. ; then
| KJC|=|kjc|?% and |Kj'c|=|KJC?;
ClEgtell =1Rielt
But | Ak; &) Av|=|kjc|*;
whence k'= Ak, ete.,
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as the student may readily verify. Hence the constant factor
is the discriminant A. When, and only when, A=1 will
k' =k, or the deduced be the same as the original Eq.; A can
always be made = 1 by dividing the original Eq. by VA.

159. Since k, I, ete., are at will, their co-factors X, H, ete.,
arve at will ; hence the tangential Eq. of Art. 158 is the most gen-
eral tangential Eq. of second degree ; since it represents a conic,
we conclude that the general tangential Eq. of second degree repre-
sents & conic. Again, since K, H, etc., are at will, so are &', It/,
etc. ; hence the point-Eq. deduced from the tangential is the
general -point-Eq. of second degree; hence the general tangen-
tial Eq. represents every conic; i.e., all curves of second degree
are all curves of second class. In general, degree and class of a
curve are not of the same number. |

If n points be taken on a conic and numbered consecutively
from 1 to n, and each pair of consecutives be joined by a RL.,
the nth being joined to the first, the points will form the vertices,
and the junction-lines the sides, of an inscribed n-side.

If n tangents be taken on a conic and numbered consecutively
from 1 to n, and each pair of consecutives be joined by a point,
the nth being joined to the first, the tangents will form the sides,
and the junction-points the vertices, of a circumscribed n-side.

In this way we might now proceed to double by re-interpreta-
tion the whole body of doctrine gone before, by making proper
changes in words throughout. But such detailed treatment
would not be in place here. One special case of great import-
ance may serve to illustrate.

160. If H,=0, H,=0, H,=0, H,=0, H,=0,
H;=0 are the Eqs. in homogeneous point-Cds. of the sides of
a G-side inscribed in a conic, they are also the Eqs. in homoge-
neous line-Cds. of the vertices of a 6-side circumscribed about a
conic: the Eqs. of the two conics will be the same in form, but
one will be in point-Cds., the other in line-Cds. By Pascal’s
Theorem the junction-points of H, =0 and H,=0, H;=0
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and H;=0, H;=0 and H;=0 lie on a RL.; the Eq.
which says this, interpreted in point-Cds., says, when inter-
preted in line-Cds., that the junction-lines of ;=0 and
H=0, H,=0 and H;=0, H,=0 and H;=0, meel
in a point. Thus is found Brianchon’s Theorem :

The three diagonals through the counter-vertices of a 6-side
circumscribed about a conic meet in a point.

This correlate to Pascal’s Theorem was first proved, though
not as above, by Brianchon, a pupil of the Polytechnic School
at Paris (1827). As there are sixty Pascal lines (Pascals), so
there are sixty Brianchon points (Brianchons).

By Pascal’'s Theorem we can find a sixth point of a conie,

2 knowing 5 ; by Brian-
chon’s we can find a
sixth tangent, know-
ing5. For be 1, 2, 3,
4 the junction-points
of the pairs of consce-
utive tangents. talien
in order; take on the
fifth tangent any point,
as vertex 5; draw 1 4
and 2 5 ; through their
section and 3 draw a
RL.; it will cut the first side at vertex 6; then is 5 6 the sixth
tangent.

By Pascal’s Theorem we could find the tangent at any vertex;
by Brianchon’s, we can find
the tangent-point on any tan-
gent. For, suppose the tan-
gent or RL. 56 to fall
together with 6 1 upon 5 1;
then 5 1 touches at 6. Draw
14 and 2 5; through their
section and 3 draw a RL., the third diagonal; it will cut 5 1
at 6.
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161. Line-Cds. are of special use in dealing with loci of
poles and envelopes of polars. If the pole (as to any referee)
move on any curve L, its polar will turn around some curve E.
The junction-line of two points of L is the polar of the junction-
point of the polars of those points; if these points be consecu-
tive, their junction-line is tangent to L ; then their polars are
consecutive, and the junction-point of these polars is the point at
which they, fallen together, touch E. Hence the polars of all
points of E are tangent to L; i.e., as the pole traces L the polar
envelops E, and as the pole traces E the polar envelops L.
Hence the relation of L and E holds when the terms are
exchanged ; i.e., it is a mufual relation. L and E are called
reciprocal curves as to the referee; this may be any conic, most
simply a circle.

We may now prove Brianchon’s Theorem from Pascal’s thus:
The poles of the six sides of the hexagon inscribed in L are the
vertices of a hexagon circumscribed about E. 'The junction-
points of pairs of counter-sides of the inscribed hexagon are
poles of the diagonals (junction-lines) of counter vertices of
the circumscribed ; since the poles lie on a RL., the polars go
through a point. Since L is any conie, so is E.

Of course, it is just as easy to prove Pascal’s Theorem from
Brianchon’s ; it is done by exchanging clauses in the sentence,
‘¢ gsince the poles, etc.” Neither theorem is logically first.

.These methods of double interpretation and of exchanging
the notions of pole and polar have received the names of Prin-
ciples of Duality resp. Reciprocity. They are in last analysis
one, and their possibility is given in the fact that the plane,
whether viewed as full of points or full of RLs.,is doubly
extended : there are as many points as RLs. in the plane; a
point for every RL., a RL. for every point. . The referee sets
these points and RLs. in relation to each other.

In conclusion, it is to note in recard to reciprocal curves
that, if a RL. cuts L in n points, through its pole gon RLs.,
polars of those points, all tangent to FE; hence the degree
(resp. class) of either of two reciprocal curves is of the same
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number as the class (resp. degree) of the other. Hence the
point- (resp. tangential) Eq. of either will be of the same
aegree as the tangential (resp. point-) Eq. of the other. Hence
the reciprocals of conics are conies: if the pole traces a conie,
the polar envelops a conic; and conversely.

Note on Points and Right Lines at Infinity.

In view of the extensive and important use made of the notions of
point and RL. at =, it may be well to ground these notions more thor-
oughly than could be done in the body of the book without breaking quite
the thread of thought.

All reasoning is in first intention not about things, but about notions or
concepts. It is a familiar fact of every-day life that the same thing may
be conceived variously, and that the conclusions that hold about it may
vary accordingly. Important illustrations have already met us. Two
coincident points are in themselves one and the same point; it is only the
mind that thinks the point now as on this curve, now as on that. So con-
secutive points are in themselves one and the same; it is only in thought
that they are held apart.

The obverse of this fact is the less familiar one that things in them-
sclves different may be, indeed, must be, thought as the same if there be
no mark to distinguish them in thought. The conclusions that hold about
them will be the same. Such things are all points on a KL. whose dis-
tances from any given point of that RL. are unassignably great. How-
ever apart they may be in themselves, they cannot be held apart in thought.
fHlence all such points are, for theught, one point, and we speak with strict-
est accuracy of the ene point at oo, the one point, not of the RL. out of
thought, but of the RL. in thought.

Such, again, are all points at = on parallel RLs. If =0 and
y =104 be two such RLs,, then indeed the oo points of the two would seem
to have this mark of distinction, that the » of the’one is 0 while the y of
the other is . But this difference, while it distinguishes them in their
outer being, does not yet distinguish them in thought. For it imparts no
property to the one that does not belong to the other. By the side of the
a value of x, the finite value of y loses all distinguishing power. This is
clearly seen on drawing a RL., say through the origin, towards the =
point of the RL. y=145; the RL. is clearly none other than the X-axis,
y=10, for any other RL. will not extend toward the « point of y=1»,
but toward some definite finite point of it. Hence we say all parallel RLs.
meet al «, meaning that the marks of distinction in our notions of the
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points of the RLs. vanish utterly as the points are thought retiring on the
R Ls. without limit, leaving the notions of all the points undistinguished,
one and the same. That parallel RLs. meet at oo is, then, no merely con-
venient form of speech, but states a fact, not of things but of thoughts.

Like reasoning applies to the RL. at oo. It might indeed be said that
there are many RLs. at oo, for any RL. might be thought pushed to «
while kept in a given direction; but all such RLs. lose all distinction of
direction in thought, yea, since each must go through the o point of each
axis, they fall together in thought completely. Hence the phrase the RL.
at w correctly expresses our thought of them.

Let the student beware of confounding the notion or conceptof a thing,
which is given in its definition and is the subject-matter of thought about
it, with its mental image. Of points and RLs, at oo there are no such
images at all,

EXAMPLES.*

Centre and Diameters.

1. Find the centre and the pencil of diameters of

6527+ 122y —3)° +82—10y —T7=0.

A=5 6 4|=5(—4)—6(-22)+4(—18)=40,
6 —3 —5
4 -5 =T
C=-51, GG=-22 F=-18;
hence the centre is (%?, 3?) ; the pencil of diameters is
al b

2x+68y+4+A(6x—3y—5)=0;
the central Eq. is
40 _

0+ 122y —3y2 - " =0;
ot 4 xy Y 5 2

the curve is an H.
2. Discuss in like manner these Eqs.:
St —Bry4+ Ty —4x4+0y=13;
427 —Gxy+9y*+65x+3y=10;
122 —=10zy+ 3y —8xr—12y=2;

* It has been thought best not to interrupt the development of the sub-
ject, but to put all the exercises at the close. The teacher may introduce
them as he deems fit; they are arranged in the order of the foregoing text.
For very many the author has to thank Hockheim’s admirable collection.
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222 —bxry—3y'+9r—=13y+10=0;

Sy —2xry+ ¥ +2x4+2y+5=0;

13224+ 14xry+54°+ 14x4+ 10y 4+ 5=0.
3. Turn the axes so as to make the term in zy vanish.
Be kx4 2hxy4jy*+¢=0 the central Eq.; put

r=1'cosa—y'sina, y=2'sina+ y cosa;

on substitution —2ksinacosa+ 2jsinacosa+ 2k (cosa —sina’) must

2Ah

=0; hence tan2a=-—-,  and the Eq. takes the form

¥

f»'—J

Ilustrations: 1022 —6xy+7y*=30; 9xr*+16xy—20*=060.
4. Turn the axes till the X-axis is |l to the axis of the P

k2 4+ 2hey+jy2+29x+2fy+ec=0.
Here C=ki—#=0, or h= Vij; theaxisof Pis Il to

Vkr 4+ Vjy=0;
h ik k h ;
ence tﬂﬂa:—‘\F-]:—-:——_, the reduced Eq. is
h J
_—_-LJ'=+2(J' ’“ﬂ)f-;-ﬂ("f )y’+c=(}.
\{I‘-i-‘j Vg

Hlustration : Brﬁ—ﬁry+yz+4x+3y+ 10 = 0.

22
5. A diameter of — —|— :ﬁ‘} =1 is y=sx; what is the conjugate ?

6. Find the chord of ﬁ LS through (1, 2) and halved by
Ey:ﬂr.
2

2
7. A diameter of 'T“fi —ﬂ% =1 1is y=sx; find the conjugate.
i

2
8. Find the chord of ‘;% + -"g =1 halved by (4, 2).

The diameter through (4,2) is 2 y = r; the conjugateis 2y 4 z=0
hence the chordis 2(y —2)4(z—4)=0, or 2y4x=8.
9. Find the chord of ‘f— — :;"Z =1  Thalved by (5, 3).

z 2
10. In ;-_6 -—*_33: 1 find the X between 3y==r and its conjugate.
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11. In 252z?—164y2=400 find the conjugate diameters sloped 45° to
each other.

12. Find where the diameter through (2, 3) and its conjugate cut
422 4 12 y* = 48.

13. Find lengths of the diameter 4y=056x and its conjugate in
49 % 4 9 x? = 441.

14. Find the slope of the diameter through (z,, y,) to its conjugate.

%

The direction-coefficients of the two diameters are YL and F b_i .!'.rl.i
o | a N
L
e ¥y = :
hence tan =7 , Bince a?y.? i bir? = i+ a?b?,
¢ X z 1 1
17— L
a

2 2

15. In 53%‘ + i‘:? =1 find the conjugate diameters sloped 120° to
each other.

16. Find the length of the diameter conjugate to 2z=5y in
— 4 z* 4 256 y* = — 100.

17. Given o' =7, =10, ¢=110°; find a and b.

Remember the relations a'24 ¥2=a?+ 1%, a'd sin ¢ = ab.

18. Find the slopes to the axis major of the equi-conjugate diameters
of 64 y%+ 25 x* = 1600.

19. Prove that the diagonals of the parallelogram of tangents at the
ends of conjugate diameters are themselves conjugate diameters.

20. Form the axial Eq. of the conic: when a=13, ae=12; when
a+b=27, ae=9; when the conic goes through (1,4), (—6,1); when
it goes through (r,y,), (x, ¥,); when ¥ =—144, ae=13; when
e=3; when a=4 and the conic goes through (10, 25).

21. Find the points of a centric conic for which = and y are equal.
‘When and how can these points be constructed ?

22. Find the axes of the conic whose vertical Eq. is 3*=5§z — 25 22,
23. Find the vertical Eq. when b=6 and the parameter = 5.

24. An H goes through (z,, y,) and the parameter is ¢; find the vertical
Eq. and the length of the real axis.

25. Express the vertical Eq. of 4 through e and b as known.

26. Show from the central polar Eq. of a conic that the sum of the
squared reciprocals of two L diameters is constant.

L)
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T 2
27. Yind where ?—Jii—izl 1s cut by y=szr+4c.
il

28. Interpret geometrically a®s® + §* — cﬂ% 0.

Since s=tan@, we may write a? % a%Zcos 0 + ¢?cos E:; hence the

RL. cuts the E in real, coincident, or imaginary points, according as the
foot of the focal L on it lies within, upon, or without the major circle ;
vice versa for H.

29. When does ka®+4 2hry+4 2 4+29x+2fy+c=0 touch either
or both axes?

30. Find the Eq. of the tangents from the origin to

ke 4 2haey 4+ jy* + 29z + 2 fy + c=0.

31. Find the Eq. of the RL. halving each of the positive half-axes of a

centric conic ; where does it cut the conie ?

32. Two vertices of an equilateral hexagon inscribed in the £
25 4+ 9z = 225 are at the ends of the axis minor; where are the others 7

33. Inscribe in a centric conic a rectangle of area 2 ab.

Tangents and Normals.

34. Tangent and normal form with the X-axis an isosceles A ; find its
vertex, the point of tangence.

35. At corresponding points of an £ and its major circle are drawn
tangents; prove that the subtangents are equal. Hence frame a rule for
drawing a tangent at any point of an E.

36. Find the Eqgs. of tangents to 5?4+ 322=15 Il to 3y—42x—-1=0.

37. Find Eqs. of tangents to 363°+4 2562*=900 sloped 30° to the
X-axis.

38. Find the Eq. of the tangentto 9#*+ z*=9 when the X-tangent
is 5.

39. Find the point of tangence whose abscissa equals the subtangent.

40. Form the Eq. of a circle whose diameter is the tangent-intercept
between the vertical tangents. Where does it cut the X-axis?

41. Form the Eq. of a circle whose centre is on the axis minor, and
which has the Y-tangent as a chord. Where does it cut the other axis?

42. Find the 2 between the tangents at (z,, y,) and (x,, y,) and the Eq.
of the diameter through their intersection.
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43. Find the ratio of the rectangles of the ordinates resp. abscissas of
the points of touch of two _L tangents.

44. Find the common tangents to a centric conic and its mid-circle
(z® + y* = ab), also the  under which the curves cut.

45. Find the 3/{ between the tangents from (x,, y,) to a centric conie.

Foci and Directrices.

46. From the foot of a directrix (on the axis) is drawn a tangent to a
conic; fromn any point of the tangent is dropped a L on the axis; from
where the L cuts the curve is drawn a ray to the focus; find the ratio of
the L to the focal ray.

47. Find the Cds. of the pole of lr+4+ my+n=0 as to a conic.

48. Draw a tangent to a conic at a given point, a focus and its direc-
trix being known.

49. The diameter through P (r,, y,) cuts a direetrix at D; find the ;
between the polar of PP and the focal ray of D.

50. Given an %{, the counter-side, and the sum or difference of the
other sides of a £ ; find the sides and angles.

51. Find the sum of two focal chords Il to two conjugate diameters.
52, Find the rectangle of the segments of a focal cherd.
53. Find the harmonic mean of the segments of a foeal chord.

54. Find the harmonic mean of two L focal chords.

Asymptotes.

55. Find the X between the asymptotes of 4z%—5 y?= 100.

56. How long is the focal L on an asymptote? How long is the
asymptotic intercept between the two Ls?

57. Find the Eq. of the tangent at (x, ,) to 4xy =a®+ .
58. When does y=sr+c¢ touch 4ry=a?+4 b7
59. Find the Eq. of the RL. through (x,, ), (z,, v,) on 4 zxy=a®+ I3

60. The asymptotie intercept between two chords joining two fixed
points of an # to a variable point of the 4 is constant.

61. Find the asymptotic Cds. of the pole of the chord through (z,, ¥,),
(*2 2)-
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62. Find the asymptotic Eqs. of the directrices.

63. The asymptotic distance of a point of an # from a directrix equals
the focal distance of the point.

64. The foeal ray of a point of a conic, the L through the focus on the
ray, and the polar of the point go through a point.

The Parabola.
65. The vertex of a P is (a, b)), the parameter is q, the axis is | to the
X-axis; what is the Eq. of the P?

66. The axisof a Pis y =06, the r of the vertex is 2, and the curve
goes through (7, — 8); find the Eq.

67. For what pointof #*=4q¢xr i3, n-times r?

68. What is the Eq. of »*=10r when w=43", the aris being a
diameter and the tangent through its end ?

69. Find the rectangle of the ordinates of the ends of a focal chord.
70. Wheredoes y=56x+¢ cut y*=4gx? Interpret g %s::.

71. Find the side and height of an equilateral A inseribed in a P.

72. Find the Eq. of the chord through (x,, ¥,) that is halved by (x, »,).

73. Find the Eq. of the P whose axis is || to the X-axis, whose param-
eter is 3, which cuts the X-axis at (12, 0), and touches the Y-axis.

74. Fingl the Eqs. of the tangents from the origin to
(y —b)=4q (r—a).

75. The vertex of a P is at (a, 0), its axis falls on the X-axis, and it
is touched by {r+my+n=20; find its Eq.

76. Find the tangent-lengths and normal-lengths in P.

77. Find the Cds. of the point of touch of a tangent sloped ¢ to the
axis.

78. When is the normal-length equal to the difference of subtangent
and subnormal? When is the rectangle of the tangent- and normal-
lengths equal to the square of the ordinates ?

79. Find the ratio of the tracts drawn from any point of a tangent to
the focus, and the foot of the L from the point of touch on the directrix.

80. Find the Fq. of a tangent to y*=4¢gxr sloped ¢pto y=sr+ ¢
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81l. Find the rectangle of the subtangents of two L tangents.
82. Show that tangents at the ends of a focal chord are L.

83. Find the Eq. of the focal ray of the intersection of tangents at
Py By

84. An isosceles A is circumscribed about a P; show that the vertex,
the point of touch of the base, and the focus lie on a RL.

85. An equilateral A is circumscribed about a P; the transversals
through the vertices and the points of touch of the counter-sides go through
the focus.

86. Under what Xs do 4+ y?=¢" and x-‘g2+y3=P! cut
yP=4qr?

87. Find a P whose axis falls on the 4 X-axis, and which touches
¥+ (z—a))=1r* enclosingit,eg, ¥y +x— 13° = 25.
88. Find the common tangentsto 2*+4 y*=s? and »*=4dgqzr.

89. Find the common tangents to the co-axial P's y?=4¢qz,
yr=4dg,(z—a).

90. Find the X between the tangents through (z,, ,) to y*=4¢z.
91. Whatis thepoleof x4+ my+n=0 asto p*=4qx?

92. P is on the directrix of P; F is focus; the polar of P meets the
curve at I, I'; PF is geometric mean of IF and FI'.

93. The diameter of a P through P cuts the directrix at D; show that
FDis L to the polar of P.

94. The axial intercepts of the polars of two points as to P equals the
axial intercept of 1s from them on the axis.

95. The Eq. of a pencil of [l chords of a Pis y=sxr+ b; what is the
IZq. of the conjugate diameter ?

96. If a chord cuts off equal segments from two diameters of a P, the
diameters cut off two equal segments from the chord.

General Focal Properties.

97. The focal L on a tangent meets the central ray to the point of
touch on the directrix.

98. The focal ray to a point of a conie equals the ordinate of the point,
prolonged to the tangent at an end of the focal ordinate.
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99. The focal polar Eq. of a chord, the slopes of the rays to whose
ends are 8,48, 6, —98, is 2qg:p=—ecos@+ secd,cos(6—0).

100. Hence, show that the tangent at (p,, 8,) is
2q:p=—ecos @+ cos (6 —8).
The Eq. of a RL. through (p’, &) and (p”, ") is
pp' sin @ — 0" 4 p'p/' sin @ — 6" + p''psin 677 — 8 = 0.
Put 8, + 0, resp. 8, — 6, for ¢ resp. @', and for ¢/ resp. p” put
e S resp. —- 29

il
l—ecos® 1 —ecosd”

since (p/, &), (p", #') are on the curve, clear of fractions; so we get, on
collecting,

psin (60—, +6,)(l—ecosd —8,)+2¢sin26,
+psin (8, —8,—0) (1 —ecos 8, +8,)=0,
2psin(—48,) cos (8 —8,)+ 2qgsin28,

— e pisin (8 —6, + 6,) cos §, — 8, —sin (8 — 6, — 6,) cos 8, + 6,: = 0.
Applying the addition theorem of the sine to the bracket, we get
2psin(—8,)cosd—0,+249s5in28,+epsin28,=0,

whence, on transposition and division by  sin26,=2sin#6,.cos6,, there
results the Eq. of Ex. 99. In Ex. 100, é,=0.

4 ]

N

101. If O be fixed, 7 any chord through it, then tan } PFO.tan} P*F'0
is constant.

By 99, the Eq. of PP’ is
2g:p=—ecos8+secB+ P cos(0—at B+ 7).
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Hence, 2g:p,=—ecosa+ 28+ secB8+ B cos (B— B') for the point
0 (P, @ + 2 B).

Or, cos B— B': cos B+ B’ 1is constant;
or, {cos B — B' — cos B+ B'} : {cos 8— B/ + cos 8 + B'} is constant;
: =gl
or, sinBsinf _ .ng.tanp' is constant.
cos B cos B

102. Normals at the ends of a focal chord meet on the || to the axis
major through the mid-point of the chord.

For they meet in the centre of the circle through the ends of the chord
and the other focus ; the proof is now readily completed.

Hence, find the locus of the intersection of such normals,

103. Find the locus of the intersection of L normals to a P.

The magic Eq. of the normal is y —sx 4+ 2gs —¢s*=0. The L normal
is g+ 2¢gs?—xs?— ys’=0. These Eqs. consist when, and only when,

0 0 y z—2¢q 0 —q lzﬂ.
0 q r—2¢q 0 —q 0 _

¥y x—2gq 0 —q 0 0

0 0 q 0 2q—=x y

0 q 0 2q—zx y 0

q 0 2q—=x i 0 0

Multiply the first row by y, and the third by ¢; add to the firat ¢ times
the fourth; take from the third y times the sixth ; there results

0 @+ zy—2qy 2¢*—qz | =0.

y x—2q 0 —q
gr—2¢* xy—2qy —(¢*+¥°) 0

Q 0 2q—=z y

Multiply the last row by ¢, add to it y times the second, then add to
first row 2 g — x times the second; there results

y(2q—=x) ¢+ —(29—2) y(z—2q) |=0.
g(r—2gq) y(x—29) — (7 + )
v+ ¢ y(z—2¢q) q(2¢—=)

Take the second row from the third, set out the factor »®—gx+ 3¢7;
this factor equated to 0 satisfies the Eq. of condition, making the determi-
nant (0, and is the locus sought: a P one-fourth as large as the original, its
vertex where normals at the ends of the focal chord meet. This result
may be got more simply otherwise, but the above illustrates the general
method and the use of determinants.
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EBeccentric Angle.

104. The lengths of two conjugate half-diameters, a’ and &/, when e is
the eccentric “:f‘ of a’, are
a'?=a%cos ¢ + b*sin €, V*= a?sin € 4 & cos ..
105. TI'ind the length of a chord of an £ in terms of eccentric 2')‘_'5.

12°= a?(cos ¢, — €08 €,)% + 12 (sin ¢, — sin ¢,)?,

= n—— i —p———y
or lfif:-iaiiﬂ"i‘-ﬂ—?j {ﬂ*sinﬂ-:-;—‘i‘ —I—Eri’cosfl% }
The bracket is the squared half-diameter || to the chord; call it D,;

12 =2 Dysin 51% Or, much more neatly, thus:

The corresponding chord of the major circle is

172'=2 D, sin L — 2.
2

In projection || chords are changed in the same ratio; the || diameter 2a'
or 2 IV changes to 2 D,, hence

2 D, sin J%iz to 2.D;sin El_g:::.
106. Find the area A of the A whose vertices are (¢}, (&), (¢,).
The sides of the corresponding Af are 2a multiplied by
sin f.l.___ﬁ’ Bin fl.:.fﬂ, resp. sin fﬂ:il;
2 2 2
the double area of any triangle is the product of the sides divided by the
diameter of the circumseribed circle ;

.2 A'=4daa sinﬂ%-sinﬂ%-sinfﬂ:;];

hence DN =2 ab sin flg—fi-sin.f%fﬂ.siniﬁg‘_ﬁ.

Clearly, also,
2 A'=aa{sine, — e, + 8ine, — e+ 8ineg — ¢} ;

———

hence Bin e, — €, + 5iN €, — €; + 8in e; — ¢,

=4Sinﬂ:§j-5[nfﬁr?ﬁ.ginfl_.:ﬂ.

If r be the radius of the circle about the A (e, €, €,), then
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2A=12.23.31:2r, or r=12.23.31:44,
Tzﬂﬂ-ﬂbl-ﬂz_
a

A focal chord ¢, is a third proportional to the axis major and the I
diameter; ie., 2a:2D =20, :¢;; hence results

251 'c, if 2g=£-
16¢ : a

107. Find the area A of the A of tangents touching at (¢), (), (€)-
The area A’ of the corresponding A’ is plainly

A':aa{tnni;—'?‘+tﬂnfﬂfﬁ+tanfﬁ—;—‘1};

Sd =abi...}
By applying the determinant formula for the area of a A fixed by three

RELs. we find
A= ubtanﬂ?-?- tanﬁ—g—fﬁ- tani:—z-_fl;

hence the sum and the product of the three tangents are equal, a relation hold-
ing only when the sum of the s is a multiple of =.
108. Show that the area of the A formed by three normals is
T

4 al

tan 9% tan =% tan 924

{8in €, + 5+ sin ¢, + € + 8in €, + €}.

Areas.

109. The side of a rhomb inscribed in an £ is s, the linear eccentricity
is the geometric mean of the half-axes; find the area of the E.

110. In the £ 26y2+ 9x2=225 find the area of a sector whose
centric X reckoned from the axis major is 60°.

111. Find the ratio of the segments into which the parameter cuts
an E.

112. Find the ratio of the parts into which a concentric circle through
the foci cuts an E.

113. Find the ratio of the parts into which a confoecal P, with vertex at
the centre, cuts an £,
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114. Find the segment eut off from #r%2 —a?y? =a%%? by z=d.

115. Find the arca bounded by #r?—a’y?=a%? and the RLs.
y=e, y=-—r
116. Find the area bounded by an ¥, its major circle, and 4= a,

_!f_—..—n"L

117. An equilateral A of side s has for its altitude the axis, for its
vertex the vertex of a P; find the segments cut off by its sides.

118. The scement cut off by a focal chord of a P is one-third of the
trapezoid of chord, dircetrix, and diameters.

119. A focal ray is prolonged by twice itself ; through the point thus
reached is drawn a diameter to the P; compare the triangular areas
bounded by the ray, the curve, the diameter, and the axis.

If the ray meet the curve at (r, ), the ratio is found to be " f
which is 10 when the ray is L to the axis.

120. Find the ratio of the parts into which *=44¢r cuts

yi=10gr —ri
121. Find the area of the figure bounded by »*=4¢x and 2*=4qy.
122. Find the area between y?’=4gr and =8¢ (r—gq).

123. Find the area of a focal sector of a P.

Determination of the Conic.

124. Determine clements of 322 —4 2y 4+ 54— 30z — 165y —20= 0.

A=—2017, C=11, the centre (G:C,F:C)is (‘i‘_: i":

0, the Eq. of the

), the curve

2017 _

is an £, the central Eq.is  32'—4ry+ 5% —

pair of RLs. through the centre and the intersections of the £ and a con-

centric circle is  3x2—dry4 5 y*— 2?:‘ : “TH_I;K =0; these RLs. fall
r

together in an axis when, and only when,

5 2017 (5 2017\ _
11 11 ¢

or 20T . 200
11% ¢4 11 r*

+16=4--154+16=5;
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whence i}lz =4 +vVh ; whence the axes are
T

(VB4 1)x? +4xy+ (VE5—1) y2=0

and (Vi-1)z?—4xy + (VE+1) y2=0,

or g \.ﬁ-i‘l}i:ﬂ:—-&l-‘h
IvH—1} 2

and .y:,_:-;.r\";i}—'l?:iz:\fﬁ_lr;

f s 1 2
while the half-axes are respectively

V4 — V5. V0T gna V4+ V5. VIOIT
11 11

125. Determine the elements of

2 —bxy+y*+8xr—20y+156=0,

3627+ 242y +20)2—-724 126y + 81 =0,

222 —5xy -3+ 0x—13y+10=0.
126. Determine the elements of 922—6xy+ y?+4x+3y+ 10=0.
HMN=—109:4, C=0, the curveisa P; the Eq. may be written

(Br—y4+A)P=2@A=2)z—(34+27)y+ A*—10,
or 1A=L

the RLs. L =0 and L'=0 area diameter and a tangent at its end;
they are L, and .". are the axis and the vertical tangent when

2 (3A—2) 9
g.2EAD] 1.0, 204« 90, A=—
e 20

Pt riagal ) 13vi0)

3%+ 12 100

The parameter is

4q9=
127. Determine the elements of
20— 120y + 144 2 =22 —20 y =1,
02 —12xy+4y°—2424+16y—9=0,
4249y —8xr4+54y+85=0.
128. The linear eccentricity of k2?4 2kxy+ i+ 2gx+2fy+e=0
is Vv{k—j) +4R.5:C.
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129. Find the comic through (0,0), (2,2), (18,6), (32, 8), (72, 12) by

rnsprection.
130. Find the conie through (3, 7), (—2,—8), [11,31}, {9,-—2}, {17,1).

131. Find the conic through (1,2), (0,1), (1:4, (V34 5):4), (1,2),
(7:8, (15— V7):8).

132. Find the conic through (—8,0), (3, VI11:12), (4, —2: Vv3),
(1,—1:2), (6, V7:3).

133. Find the P touching the axes at (4,0) and {0, 3).

We have f\':ﬂj o =10 C:ﬂ, lﬂfc+89+r=ﬂ, [I‘}—[-ﬁ‘f-]-f‘.—ﬂ‘r,
whence (3r:+4y)2—24(3xr44y—6)=0; to the lower in the double
sign corresponds a P, to the upper a double RL. through the points of
touch.

134. Find the conie touching both axes, the Y- one at (0,4) and going
through (16: 3, —20:3), (=3, 10 + 2V15).

Constructions.

135. Glven the conic drawn, to determine its elements.

Draw a pair of pairs of I ¢kords, and through the mid-points a pair of
diameters; these meet in the eentre. If the conie be a P, draw two chords
L to the axial direction; their halver is the axis; from the foot of any
ordinate lay off a subtangent double the abscissa, through its end and the
end of the ordinate (on the curve) draw a IRIL.; it is a tangent to the
curve. Through the mid-point of the tangent-tract draw a L to it; it meets
the axis at the focus; the directrix is L to the axis and is counter to the
focus as to the vertex.

If the conic be centric, draw on any diameter of it a half-circle, and
from where this meets the conic draw to the ends of the diameter a pair
of chords; they are supplemental and 1 ; hence, the diameters || to them
are conjugate and L ; i.e., are the ares. In the E, from an end of the axis
minor draw a circle with the half-axis major as radius ; it cuts this axis in
the foci. DBut, in the H, the ends of the (minor or) conjuzate axis being
imaginary, draw the vertical tangents (L to the real axis); draw the diam-
eter of any two Il chords, and at its end a tangent (/! to the chords); on
the intercept of this tangent between the [! tangents as diameter, draw a
circle; it cuts the real axis in the fuer. A circle about the centre and
through the foci meets the vertical tangents on the asymptotes. Combining
the Eqs. of an asymptote and the major circle, we sce they meet on the
directrices ; but this construction of the latter is available only in case the
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asymptotes are real, i.e., in #. In the E, draw a tangent at the end of a
focal ordinate; it cuts the axis major on the directriz corresponding to

that focus.

136. To draw a tangent at a point to a conie.

In P, lay off from the foot of the ordinate the subtangent double the
abscissa ; thus is reached a second point of the tangent. In E, draw a tan-
gent at the corresponding point to the major circle; it cuts the major axias
in a second point of the tangent to E. In #, halve the inner X of the
focal rays to the point. The like construction of course holds for P and E.

137. To draw a tangent from a point to a conic.

On a focal tract to the point, as diameter, draw a circle; it meets the
major circle in two second points of the two tangents. In P the vertical
tangent is the major circle.

138. Given the foci and one point (or tangent) ; construct the conic.

To give the focus at o is the same as to give the direction of the axis
of P.

139. Given a focus, an axial direction, a tangent and its point of touch.

Use the counter-circle of the other focus.

140. Given 2q, a focus, a tangent and its point of touch (or an asymp-
tote).

141, Given a focus, two tangents (and their points of touch in £ and #).

142. Given a focus, and one diameter in length and position.
Find other focus and the axes, and use the major circle.

143. Given three tangents and a focus.
Use major and counter circles.

144. Given a focus, two tangents, and the axial directions.

145. Given the centre, a focus, and a tangent; find where tangents
from a point P touch the conic.

On the focal tract FP as diameter draw a circle; through its intersec-
tions with the major circle draw RLs. from P; they are the tangents; to
find points of touch, use the counter-circle. :

146. Given the centre, axial directions, a tangent and its point of
touch P.

Through P and the intersection of tangent and axis minor draw a circle
with centre on the axis minor; it passes through the foci.

147. Given the centre, a tangent, and 2a. Use the major circle.
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148. Given the centre O, a point PP of an £, and 2 a.
Find the corresponding point P'; draw through F a [l to axis major
cutting Of" at B; OB is axis minor in length.

149. Given the centre, axial directions, and two points of the conic,
I, P
Lt
Express a® and #2 through the Cds. of P, and P,.

150. Given two tangents and their points of touch, and the direction of

the axis major.
Construct a diameter and apply 149.

151. Given a point P of an E and the axis minor in length and position.
Draw |l to axis major, through P, cutting minor circle at P ; the cen-
tral ray through F’' cuts the ordinate of 2 on the major circle.

152. Given a tangent and the axis major in length and position.

153. Given two conjugate diameters, AA', BB, in length and position.

Draw a tangent at 5; lay off «' on the normal from /7i; through the
end of ' and the centre draw a circle with centre on the tangent ; it cuts
the tangent on the axes.

154. Given any pole P and its polar L, a directrix, and the position of
the axis major.

Let L meet the directrix at D; on PD as diameter, draw a cirele - it
cuts the axis major at a focus.

155. Given the asymptotes and the foci, or the transverse axis.
156. Given the transverse axis and a point of the &, »*= "2 .
bl

157. Given the asymptotes and a point P of the H.

Draw through P tracts ending in the asymptotes; from P lay off on
the longer segment the difference of the two segments; so are got any
number of points of the #. Draw the tangent at P il to the fourth har-
monic to the asymptotes and the diameter through £ ; the asymptotic
Cds. of the vertex are each the geometric mean of the asymptotic Cils.
of P.

158. Given the asymptotes and a tangent.
Halve the tangent intercept.

159. Given the asvmptotes and the difference of @ and 5.

160. Given an asymptote, a tangent, its point of touch, and a sccon:!
point.
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161. Given the centre, an asymptote, a tangent, and the ratio a : b.
162. Given the centre, an asymptote, and two points.
163. Given an asymptote and three points.

164. Given the vertical tangents, point of touch of one, and a third
tangent,

165. Given two tangents and the focus of a P; find the point whose
focal ray is the half-sum of the focal rays to the points of touch.

166. Given focus and (1) two points, or (2) one point and a tangent

of P.
In (1) draw about each point a cirele through the focus; either outer

common tangent is directrix ; in (2) either tangent to the one focal circle
from the counter-point of the focus as to the given tangent is directriz,

167. Given the directrix and two points (or one point and axis) of a P,
168. Given the directrix, a tangent, and a point of a P.

169. Given the vertex, the axis, and a point of a P.

170. Given the axis, a tangent, and its point of touch (or the vertex).

171. Given the vertical tangent, another tangent, and its point of
touch.

172. Given two tangents and their points of touch, in a P.
173. Given the vertical tangent and two others, in a P.

174. Given three tangents (or two points) and the axis of a P.
175. Given four tangents to a P. Use focal eircles.

176. Sides, altitude, base of an isosceles /A are tangents, axis, chord of
apP.

177. A P touches one side of a A at its mid-point, and the others pro-
longed.

178. Given the axis, the parameter, and a point of a P.
Draw normal first.

179. Given the directrix (or focus, or axis), a pole, and its polar as to
apP.

Loci.
180. Find the locus of a point of a tract whose ends move on fixed RLs.

181. Fixed are the base of a A and the point of touch of escribed
circle ; find locus of vertex.
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182. The product of 138 from F on two RLs. is #?; where is P?
183. Given a side and counter 2; of a A; find locus of its mass-centre.

184. Find the locus of the fifth noteworthy point in a A, given a pair
of counterparts, or a pair of adjacent parts.

185. Find the locus of mid-peints of chords of an E, through a point.

186. From two points on a tangent to a circle, d apart, are drawn two
other tangents ; where do they meet ?

187. An E turns about its centre; where it cuts a fixed RL. tangents
are drawn to it ; where do they meet ?

188. A circle intercepts given lengths on two given RLs.; where is its
centre ?

189. Find the locus of mass-centre of a A of constant area, two of
whose gides are fixed.

190. A A is formed by a fixed RL. and two sides of a given X turning
about a fixed point; find the locus of eentre of circumseribed circle.

191. Tangents from P to P form with the polar of P a /A of constant
area; find the locus of P.

192. A vertex of a A is fixed, the constant counter-side is pushed along
a RL.; find the locus of the centre of the cireumscribed circle.

193. The base of a A is given; the vertex glides on y+ n2? = mr,
whose directrix is |l to the base ; find the locus of centre of mass of the A.

194. Find the locus of pole of tangent to y*=4gr asto x4+ y?=r%

Homogeneous Co-ordinates.

195. The Eq. of =xcosa+ ysina—p=0 in homogeneous Cds.
(N, N, N3)is N+ w,N,+ 9, N; =0;  find », », »;.
We have N, =zxcosa +ysina—p, =0, andso for IV, IN¥;; hence,
¥, co8a; + ¥, CO8a, -+ vy CO8 @y = CO8 a,
¥ 8in a, + », 8in &, + », 8iD0 a; = 8in a,
"Pr+ VPt ¥ P3=P;
¥ =|cosasina,p,|: A,
v, =|cos a, 8in ap,|: A,
v, =|cos a, Sin a,p|: A,
A =|cos a; 8in a, p,].
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196. Base lines are LLSEI-—EFJA],:DJ L:‘_—;Er—ﬂ_ﬂ:(},
Li=x4+y41=0; find the Eq. of r4+2y—4=0 in homogeneous
Cds. {L‘.I.: Li‘! Ls}'

Wehave oA, + 22,4+ 2,=1, =20 =24 2;=2, A\ =3 A, +2;,=—4;
whence, on finding A, A,, A4, substituting in A, L, + A, L, + 2, L, =0, and
multiplying by 23, —20L,+39L,445L,=0.

197. Show that the two Egs.

N+ 7N+ 7 N;=0 and N, sin A, 4+ N,sin 4,4+ N,sin 4, =0,
represent each the RL. at .

198. Where does v, N+ »,.V,4+ 5, N;=0 cut the sides of the
referee A\ 2

Find the intersection with N, =0 from », N,+ », Ny =0, 7, N+ 7,1V,
=24, whence N,=24v;:(1y05—11,), N;=24r:(rgv,—7,p), and
g0 for the others.

199. Wheredo », Ny 4w, Ny + 1, Ny=0 and /N, 4+ +,/ N, +4/N;=0
meet ?

Since 7, N+ 71, N+ 713 N;=24, N =2a]|r,5/|:]|y v'7], andso on.

200. Find the Egq. of the RL. through (N/, N,, N,) and
(N N A

ﬁﬁsll]l‘l{: l"l 4'.1#"! + l"': J,"T:, + l-l"s_ J-I‘\Tn —— 0 ; thE]] FIFNIF+ :"2 .E.‘?zr-l_ 'r"u Nﬂr = {:l.
nN"+ e, N+ vy NJ'=0; | N, NN =0.

201. Find the RLs. through (N, V), N)/) and the vertices of the
referee 2.

202. The RLs. N, =0, N,=0, wyN, 4+, N;=0, /N, +»/N;=0
form a four-side; find the diagonals and where they meet.

203. Show that the diagonals of a four-side are cut harmonically.
204. Homogeneous Eqgs. of || RLs. differ only by constants.

205. Find Eqs. of RLs. through the vertices of the referee |l to the
counter-sides.

206. Find Eqs. of RLs. through the vertices and the mass-centre of the
referee.

207. When are » N+, N+ »y Ny =0 and /N, + /N, +»/N,;=0
perpendicular ?

208. Find Eqs. of the altitudes of the referee and the Cds. of the
orthocentre.

209. Find Eqs. of junction-lines of the feet of the altitudes of the
referee. -
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210. Find Eqs. of the mid-perpendiculars to the sides of the referee.

211. Find Eqs. of RLs. through the vertices of the referee and the
points of touch of the inscribed and escribed circles.

212. Find the distance of (N,', N/, N} from » N, 4+ »,N,+ v, N, = 0.
When but two Cds. are used to fix a RL., call them ! and m, and write
the Eq. of the enwrapt point thus:

P=w4+tm41--0.

213. Find the Cds. of the junction-line of P, =0 and PF,=0.

Proceeding exactly as if to find the junction-point of ZL,=0, ZL,=0,
we find = (v, —v,): |wr,], m=—(uy—u,): jup,|.

214. Find the distance of P, =0 {rom the RL. (/}, m,).

To say the Cds. of the RL. are /}, m,, is to say its Eq. in rectilinear Cds,
u,v,is lu+mr+1=0; tosay the Eq. of the point is ul + v+ 1=10,
is to say its rectilinear Cds. are u,, v, since they fulfil the Eq. of any RIL.
through it ; hence, the distance sought is

wdy + ey + 1_
VIE+ m,?

215. Find the Eq. of the point that cuts the tract between P,=0,
and P,=0 in the ratio n,:n,.

Think of (u,, v,) (u,, v,) a8 the points in rectilinear Cds., then

m, 4+ My, gy 4 gy
ny + My g ny + n,
is the cutting point; the Eq. of this point, viewed as enwrapped by the
varying RL. (/, m), is

iy + Myt nr, + ngy
—_— — ~  m4+1=0.
n, + n, n, +n,

For n, and n, like-signed, the point is an inner one, otherwise an outer

one. The Eq. may also be written
Py +n Py 0
ny+ny,

The inner resp. outer mid-point is P, + P, =0 resp. P, —P,=0.

216. The verticesofa Aare P, =0, PFP,=0, P;=0; (findthe
mass-centre. From (215) it is seen tobe (P, + P, + P;):3=0.

217. Three vertices of a parallelogram are P, =0, FP,=0, P,=0;
find the fourth.

218. Find Eq. of any point on junction-line of P, =0 and £,=0.
Itis P, —kP,=0; for this is Eq. of a point, being of first degree in
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I, m, and it lies on a RL. through P, =0 and P,=0, since it is ful-
filled where they are. From (215) it is seen that L is the ratio of the
distances of the point from P, =0 and P,=0; varyingZ gives all
points on the RL.

219. Whendo P;,=0, P,=0, P, =0 lie ona RL.?

Clearly when  |u;,1|=0, or when kP, 4+ kP, + kP3=0.

220. Show that the points at « on the sides of a A lie on a RL.

221. The product of the ratios in which the sides of a /A are cut is 1;
then, and only then, the cutting points are on a RL.

The cutting points are P, —4,P,=0, P,—%P,=0, P,—1L,P=0;
the determinant of these three Eqgs. vanishes only when X .k, . ky=1.

222. Howdo DI +4iP,=0 and P,+4+kP, =0 lie on the RL.
[Plr P‘E] :

223. The crossratioof P, —4L,P,=0, 1=1,2,5,4, is
ki "'-4'.1:2 -L‘a '--’:."_:kﬂ —_— -I{'a- ;"Il '—l'll:lp

All the problems of the text as to rays may be repeated as to points.
All the problems in homogencous point-Cds. may now be paralleled by
problems in homogeneous line-Cds. E.g.:

224. Be P;=0, P,=0, Py=0 three vertices of a A; express
P =0 through them in the form x,P; 4+ w0, + x3P;=10. See (195).

225. Writing p= P:Vi¢+ w? showthatin wxp, + K0+ kyp; =0,
the x’s are proportional to the distances of this point from the sides of the
referee.

226. Find Cds. of the RL. through w;p, +wxp,+x3p;=0 and
1o+ Ky py+ &y ps=0.
227. Find Eq. of junction-point of RLs. (p',, p',, p'5) and ( p",, p'l,, p"';).

228. Whenis wx;p, 4+ xyp, + x3p3=0 a point at oo ?

The RLs. (p,p.p;) and (p,+d, p,+d, p;+ d) arell; since they go
through the same point at «, their Cds. satisfy the same Eq.; or,

K Pr+ Pyt kapys =0 and m(py+d) + m(p,+d)+ x5 (ps+d)=0;
whence Ky + Ky + k3= 0.
229. Show that the mass-centre of the A p, =0, p,=0, p,=0 is
P+t ps=0.
230. The centre of the circle about the referee is
psin2d, 4+ p,sin 24,4 p;sin2 4, =0,
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231. The orthocentre of the referee is
ptan A, + p tan A, + pytan A, =0,

232. Mass-centre, orthocentre, and centre of vertices of a A lie on a
RL. In the determinant of the Eqs. of the points multiply first row by
2 sin A, sin A, s8in A, ; take from third row; take out 2 cos A, cos A, cos ;.

233. The centre of the cirele in the referee is

psin A, 4 p,ein A, + py 8in A, = 0.

234. The intersection of the transversals from the vertices to the points

of touch of the escribed circles is

i | cﬂt‘%""‘fﬁﬂut% +P3C0t"%a =0.

235. The points of (229), (233), (234) lie on a RL.

236. The point wyp;+ wepa+ kyp,=0 is distant from the RL.
(P'oPop’s) (pi+ o p s+ wspls): (0 + K+ x3)-

Envelopes.

237. When does the RL. ({, ) touch the P whose axis falls on the
+ X-axis and its focus on the point ¢/ 4+ 1=07
The RL. lu4+ mv+1=0 touches »*=44gu  when the roots of

L't.i-*n}- mrv+ 1=0 are equal, or when m*4¢=1[, which is therefore the

4q
Eq. of the P in line-Cds.

238. Through a fixed point P is drawn a RL,, to which, where it meeis
a fixed RL., is drawn a 1 ; find the envelope of the L.

Take the fixed RL. as Y-axis, the L to it through P> as Xaxis: be
u and v the intercepts of the enveloping RL.; then = pu, ie., the
envelope is a P, P is the focus.

239. Find the tangential Eq. of £ referred to its axes. The intercepts
areu=a’:r,, v=~01:y; whence, on squaring, inverting, and putting

2 y? a? b _ ; : .
=L 4+<L =1, results — 4 — =1; or, calling the reciprocals of the inter-
at TR TR
cepts l and m, a2+ ¥¥m?=1. Otherwise, thus:
A= —lu 0 0 |; whence K:-—‘L, o = — 1_, £?=..L;
a’ b2 a2 aths
1
0 Y 0
o 0 =1

whence, on substituting and clearing, the same result is got.



EXAMPLES., 219

240. About the point (e,0) is drawn a circle with radius 2a, from
(—e€,0) is drawn a ray to the circle; find the envelope of its mid-perpendic-
ular (a > e).

The Eqs. of the circle and ray are z—e + = 4(1?‘-, y=s(x+e);
that of the mid-perpendicular is

Va? (1 + §7) — e%s? —es? sva? (1 + s?) — e’s* + se

(.‘I‘— { +1_f_33 )-i-s(y— { 1-{-]32 + )=D.

The intercepts of this are

Vai(l +s)—els=u and Vai(l +s)—eSis=v;
whence eliminating s and putting [, m for 1:u, 1:v, we get
atlt 4(a* —e)m?*=1:

the envelope is an E.

241. Through (e,0) and (—e,0) in the circle 2?4 y?=a? are drawn
Il chords ; find the envelope of the RL. joining two ends of the chords on
the same side of a diameter. a’l* 4 (a® —e*)m? = 1.
242. Thells y=a, y=—a, meet thecircle 2?2+ y? —2rx=¢e2,
and the points of meeting are joined crosswise ; find envelope of junction-
line when A varies, a?m? 4 (a’*— ") = 1.
How does the envelope change as e changes ?

-3 2
243. The pole, as to :T:*+ %-i =1, traces the circle 2?4 y2=a?;
what does the polar envelop ? Ans. a*lP4b*m2 = a?,

Hixt. Eq. of the polaris ZH4¥1-1; here Hi=] N=mn.
ﬂﬂ b‘..l a‘a‘. .{.'2

244. Find the envelopes when the poletraces 2?4+ y?=10* and a®4 b

245. Find the envelope of the junction-line of the ends of two conju-
gate diameters. Ans. The E a¥? + b*m®= 2.
Hixt. The ends are the points (acose, bsine) and (— asin e beos €) ;

the RL. through them is  xb(sine —cose)— ya(sin e+ cose)+ ab=0;
here (cose—sine)=al, (cose+sine)=bm; hence the above result,

on squaring.
246. From the point (e, 0) rays are drawn to the circle
(z+ €)' + y*=a?;
find the envelope of their mid-perpendiculars.
247. The vertex of a right X glides on 2?4 32=+2 one side en-

wraps the point (e, o) ; what does the other side enwrap ?
Ans, r’B— (& —r)m*=1.
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248. What is the tangential Eq. of 722 =544 12x4+8y—47=07

249. Show, in two ways, that the tangential Eq. of # referred to its
asymptotes is  [m{a*+ %) = 1.

250. When does the general tangential Eq. of second degree,
KE42Hm+Jm*+2GI+2Fm4+ C=0,

represent an £? when an #? when a P!

Be kr*+2hry+jy*+2gx+2/y+e=0 the Cartesian Eq. from
which the tangential is got by putting for L, &, ete., their co-factors A, H,
etc., in A; also suppose A > 0. Then, as both Eqs. picture the same
curves, the criterion is the same for both: the curve is £, P, H, according
a5 0'=0, C=0, OV,

251. Putting L/, ¥, ete., for the co-factors of A, H, ete., in A, show that
the tangential Eq. pictures two points when A =0 and ¢ <0, pictures
one double point when ' =0, =0, /=0,

252. Discuss 250 and 251 geometrically, remembering that from every
point of the RL. at « may be drawn two tangents to £; only from outer
points may they be drawn to #; from erery point may be drawn only one
tangent to P, since the RL. at o itself touches P; and combine with the
given Eq. of second degree the Eq. [ —am =0 of a point ate.

253. From a point on the X-axis are dropped Ls on the RLs. r =y
and x+42y=10; find the envelope of the junction-line of the feet of
the ls. Ans. A P.

254. Two RLs. mutually L turn about a fixed point; find the envelope
of the junction-line of their intersections with two fixed R Ls.

255. Through (o, d) is drawn the secant x4 y=d of the system of
circles 24 y*—2ar=d*; find the envelope of the tangents at the
points of secancy.

256. Through (o, d) are drawn secants to 2?4+ y*=7% and Ls drawn
to the secants at the points of secancy; find their envelope,

257. Find the envelope of the polars of a point as to a system of con-
focal conics.

258. A secant cuts a system of confocals; find the envelope of tan-
gents at the points of secancy.

259. The two points at oo in: K are real; P, coincident; E, imaginary.

260. Two [s, one formed by tangents to a curve, the other by chords
joining the points of tangence, may be called outer resp. inner, and said to
correspond, Show that in P the cuter is half the inner,
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261. Establish Carnot’s Theorem: The product of all the ratios in
which a conic cuts the sides of a closed polygon is 1.

Hixt. Dy Art. 72 the product of the ratios in which the conic F=10
cuts the side P\ P, is F,: F.

262. If F,=k2*+2hay+7,9°+29x+2fiy+¢, and A be a
parameter, then F| 4+ AF,=0 is a system of conics: through how many
points ? what pairs of RLs. belong to the system? what P's? when does a
circle belong to it ? what is the locus of the centres ? how lie the polars of
a point as to the members of the system ? how lie the poles of a given
RL. 7

263. Show that any RL. cuts the system in a system of points in Javo-
lution, whose foci are the points cutting harmonically the chords of the base

conics.
264. Show that when the pole traces a RL. the perpolarenvelops a P.
265. Find the envelope of normals to an E, an K, a P.
266. Find the envelope of the perpolar when the pole traces a conic.
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Part II. OrF SPACE.

THi1s subject is much more extensive than the Geometry of the
Plane, so that any detailed treatment here is out of the question ;
only the most essential notions can be developed At the same
time, the close analogy of the two doctrines permits a much
more condensed discussion than was possible in Part I.

CHAPTER 1.

1. We say of Space, it is triply extended or has three dimen-
sions, meaning that three determinations are needful and enough
to fix any element of it. These determinations may be made
in many ways, giving rise to as many systems of defermining

+X

-Z

magnitudes, Co-ordinates. Thus, suppose three planes meeting
at O; call their intersections the X-, ¥-, Z- axes, the planes
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themselves the ¥ Z-, ZX-, X Y- planes : when no confusion would
arise, omit the words axes and planes. A plane || to Y Z, cut-
ting off a tract O4d=ea on X, has all its points at a dis-
tance & from ¥ Z measured || to X, and no ofher points are so
distant ; hence it is defined completely by the Eq. a=a. So,
too, wy=0, z=e¢, are Eqgs.of planes || to ZX, XY resp.
The first pair meet in a RL. || to Z, for «fl points of which, and
for no others, the relations hold: x=a, y=58, which are there-
fore the Eqs. of « RL. || to Z.

So,to0, y=b, z=c¢ resp. z2=¢ =0 are Fys.
of RLs. || to X resp. Y. As a special case, =0, y=0,
z=0 arethe Egs.of YZ, ZX, XY; »=0, z=0, and
z=0, =0, and 2=0, =0 arethe Eqs. of X and Y
and Z. The three planes and three RLs. of intersection meet in
a point for which, and which alone, hold all three relations :
x=a, Y=0, =z=ec, whichare therefore the Egs. of the point.

It is most convenient to think XY lhorizontal, right or east
being + X, forward or north + Y, as in Plane Geometry.
Either up or down may be taken as 4+ on Z, but up is better,
according to the convention, important in Mechanies : That side
of a plane is 4+ whence positive rotation (as from + X to + Y)
appears counter-clockwise.

Clearly Space is cut by the three planes into eight regions.
The upper four we name 1, 2, 3, 4, from the quadrants in XY
., +, on which the_j:' starltl; those below, in the
ot T same order, 5, 6, 7, 8.

—s —» Tl+s —» £ Then the signs of z, y, z in the eight
regions are, as in the diagram, the lower sign of the z referring

to the lower region.
SR ST ST

The X 3 yz, zr, xy may be denoted by x, ¢, » ; unless otherwise
stated they will be considered right 2s. We may call 2, y, z
triplanar Cds., and speak of the point (z, ¥, 2).

o —

2. Around any RL. (say Z) as axis, suppose laid a eylinder
of radius r=r,. All points of the surface, and no others,
are distant r; from the axis, and the surface is defined completely
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by its Eq. #=7,.  Through the axis pass a half-plane sloped
=46, to some base-plane through the axis (say ZX) ; then
is this half-plane defined completely by its Eq., 6=86,. For
all points on the RL., the intersection of half-plane and cyl-
inder, and for no others, hold the relations : r=n, 0=86,
which are therefore the Egs. of that EL. Pass a plane L to Z,
hence || to XY, and distant 2=2, from this latter. By
Art.1, =z=z isits Eq. For the intersection of this plane
and the RL. (), ;), and for no other, hold the relations r =17,
0=86, z=z, which are therefore the FEgs. of the point.
We may call ,0,z eylindric Cds.,and speak of the point (7, 6,2) ;
r may always be taken 4+, 6+ when reckoned counter-clockwise,
#z + when reckoned up. Connecting the two systems of Cds.,
the relations hold :

x=rcosh, y=rsind, z=2z.

3. About any point (say the origin O) lay a sphere of radius
p1; clearly its Eq. is  p=p,. DPass a half-plane as in Art. 2;
the Egs. of the half great circle in which the half-plane meets
the sphere are clearly p=p, 6=6,.

About Z lay a cone sloped 8, to Z and ¢, to XY, so that
h+¢=90°; its Eq.is 8=38,, or ¢=¢,. For the
point where it meetls the half-circle, and for no other, hold the
VA

T ——— P ——
- - ‘.*

relations: p=p,, 6=06;, ¢=¢ (oré=324;), which are
therefore its Egs.
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We may call p, 8, ¢ (or 8) polar or spheric Cds., and speak
of the point (p, 6, ¢); p may be taken always +, & + when
reckoned counter-clockwise, ¢ + where reckoned ftoward + Z
(8 always +). Clearly # and ¢ correspond to geographic Longi-
tude and Latitude : & may be called (north) polur distance.

On projecting p on Z and on XY, and this last projection on
X and Y, these relations become manifest :

x=p cos ¢ cos § = p sin & cos 0,
Yy =p cos ¢ sin § = p sin ¢ sin o,
z=p sin ¢ = p €08 .

4. Hereafter, cosine resp. sine may be denoted by putting a
horizontal bar under resp. vertical bar afler the argument, thus :
w|] = 8in w, w = COS w.

Call the tract OP from the origin O to any point P the radius
vector of the point, and denote it by p; denote its slopes to

Z

X, Y, Z by a, B, v, and call their cosines a, 3, y direction-cosines

of p. Then, by definition, the projections of p on the axes are
the Cds. of P; i.e.,

z=uap, Y=PBp, 2z=yp.
Squaring, adding, and remembering 2* 4 3 + 2? = p?, we get
f+f+y=1 (4)



-
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DIRECTION-COSINES. 2o

For one factor in each term put & ¥ E, multiply by p, and get
p PP

a% + By + yz = p, (B)

which simply says the sum of the projections of a train of tracts
Jrom O to P on OP is OP, as is already known.

Now take a plane perpendicular to OF; it will be sloped a,f3,y
to YZ, ZX, XY ; let it meet X, Y, Z at A, B, C, and call the
area of the A ABC A; the projections of this A on YZ, ZX,
XY are the & BOC, COd4, AOB; their areas are ad, BA, yA;

squaring, we get 43_5.2 +§_.f +E_&2—_— A?! since o'+ F4-y=1;
e., the squared hypotenuse-face of a right-sided tetraeder equals
the sum of the squares of the other faces. This proposition is the
analogue (for space) of the Pythagorean.
The distance d between Py (py, a3, 81, 71) and Ps (pgy sy Boy ¥2)
is plainly the diagonal of a parallelepiped, whose edges are

By — %y Y1— Y A—%; hence F=2—a, +y — Yy +u— 2
5
By the Law of Cosines  d* = p® + ps> — 2 p, ps p1p-

Hence,

i} ;
pp: = (Tize+ Y +22) tppp=an+BiB:+ny. (C)

This last expression for the cosine of the X between two RLs.
in terms of their direction-cosines holds even when the RLs. do
not meet, since the X between two non-intersecting RLs. equals
the X between two || intersecting RLs.

CoroLLARY. When, and only when, p, and p, are L,
E'IEE+§]@E+1’IIE=D' (Cl)

The X between fwo planes equals the (adjacent) X between
two Ls on the planes, but the slope of a RL. to a plane is the
complement of the slope of the RL. to a _L on the plane; hence,
the slopes to the axes of a plane L to p are A=90°—a,
B=90°—p8, I'=90°—y; hence,

P Y
AP+BE4+TP=1 and ILI,=A,|A;| 4+ B,|B,| 4+ 1, |Ty| (Co)
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4.* In case of oblique axes we use the theorem : the projection on any
RL. of a tract between two points equals the sum of the projections of any
train of tracts between the points; hence

~ ™ N
ppl=z.xl 4 y.yl+ 2.zl

Take as /, in turn, the vector p and X, Y, Z; so we get

P N P | P P Y P!

p=z.2pty.yotz.2p  pEp=zHy.yz+z.zs
L T ~x P ~ ~— {D}

P =%y ET+ea, pRp=Z.azdy.pata

On maultiplying in turn by p, =z, y,- z, and adding, there results

. . 2 U N Ty
PF=2+yP+2+2yz.yz42zr.2x 4+ 2xy.z2yY.

P Tan Tan. ' g
Hence xp, yp, zp, or a, B, 7, are found at once by using (D).

To express conversely z, y, z through p, a, B, v, form the determinant A

5 ~ ~
of the four Eqs., remembering yz=x, z2zr=4¢, zy—=w;

ﬂ:—lfgr,andput 32=1rf1£;
5 1 &3 @ &
B« 1 x v ox 1
¥ x 1 |

then, denoting the co-factors in A by like letters accented,
r=a'p:8, y=8p:8, z=+p:5.

On putting these values in the first Eq. of (D) and clearing, there
results
xl%a* + "B+ w|? P —2x"By —2¥'ya—2//aB =,  (A%)
where x", ¢/, «'' are co-factors of like letters in §%

To find the distance d between two points, P and P,, take P, as a new
origin (see Art. 6), then the Cds. of P are r — x, y — y,, = —z,; put these
for z, y, z, and d for p in the formula found.

To find the cosine of the X POP,, put p, for /; then

= 7 = N
p.pﬂ:i.r_ﬁ+y.y_ﬁ+z.ﬂl;

on substituting for the cosines on the right, there results
~
per = {zxy + ¥y + 27, + x(yz + z2p)+ Y(zx, + z23)+ wlxy, + yxy)dipp. (CF)

On comparing (A) with (A*) and (C,) with (C,*), analogy would sug-
gest the following Eq. as (C,*) :
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~

ey = x|%aa; + ¥|?88; + w|®yy — x"'(Bn t+ Byy)
*'*”‘:IE] + EI],}"‘“ W”'['_‘gj“i“ &1] : 8% {ﬂ:*}
This conjecture is readily confirmed thus: on putting, in (C,*), for the
(C'ds. their values found above, the product pp; vanishes, $' becomes
divisor, subscribed and unsubscribed letters (a, 8, ¥) combine every way in

sets of two, and the result, symmetric as to the subscribed and unsub-

- - f-\ l".-“ L]
scribed letters, since  pp, = p;p,  is of the form

{Aaa, + BBB, + Cyy, + A’ (B + ¥8;) + B'(yay +ay)

—~
+ C'(aB;+ By )} = §*. ppy,
where A, B, C, A/, B!, (' depend only on x, ¥, w.

For ?ﬂ =0, this must pass over into (A¥*), for then a=gq, etc.;
hence A= x|%. 8% ete.,, which on substitution yield C,*, as guessed.
We have seen that in case of rectang. axes
BOC* 4 COA* + AOB’= ABC",
i.e., the squared area of a & (and hence of any plane figure) equals the sum
of the squared areas of its projections on three rectangular planes. To find the

greneral theorem for oblique axes, of which the above is a special case, we
note that the corresponding formulae for rectang. and oblique axes are,

when }Jﬁ AOB = w,
AB*=0A4"4+ 0B' and 1B°=0A"+ 0B —204.0B.e.
On putting OA=a, OB=10, these formulae may be written

AB=—|0 a b|, AB'=—=|0 a &|
a 1 0 n 1 w
b 0 1 b o
So, too, putting OC =¢, we have in case of rectang. axes
4 ABC =—|0 bc ca ab|; whence 4 ABC*=—=|0 be ca ab ;
bke 1 0 0 be 1 w ¥
|ca 0 1 0 ca w 1
lab 0 0 1 - X
ab lf X 1

if the analogy holds, a result easily verified.
The area of a parallelogram whose sides, a and b, are sloped w is ab sin w,

or
]'i.

[

ab

e
- B
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Accordingly we might suspect the volnme of a parallelepiped whose
edges a, b, ¢ are sloped w, x, ¢ to cach other to be

abc]l w yY%
@ 1 x
v ox 1

This conclusion from analogy is readily verified thus: take the paral-
lelogram ab . w| as base, project € on X at A’ and on X'} at " (the edges
being taken as axes); calling the diedral 2’{ along X A, we have

CA=cyl, CC=c.y|l.A].

By spheric trigonometry A|= v"l'—__a{'* — ¢ —w'+ 2x¢wiy].w|; the
volume is ab.w|. C'C’, whence the formula above.

The radical of the determinant, which is § of A¥, is thus scen to be the

volume of a parallelepiped of unit edges, sloped w, x, { to cach other. Since

the factor § turns the product of the edges into the volume of the parallele-

~
piped, just as sinab turns the product of the sides into the area of the

parallelogram, it has been named (by Staudt) sine of the solid angle of the
~
edges, and may be written sin abe or abe|.

If £ n, T be the slopes of X to YZ, Y to ZX, Z to XY, then

CC=c.l;
A . N
but CC'=c.¢§|.A|=c.xyz|:w]; hence zyz|=¢(|.w|, or

S=El.xI=nl-¥[=1]. »].
To find thearea of any A\ (or other plane figure) in terms of its projections,

~ —
call these projections [I.yz|, J.zr|, K.xy| (orI.x|,J. 4|, K.w|), and
suppose the _L p on the plane of the A directed by a, 8, %; then

A.ca=TIx|.t], or A.a=1.§,
since each is the projection of /A on a plane L to X. Hence
L.a=T1.8, A.B=J.8, A.y=K.S.
If % be the altitude and [ the edge of a prism standing on A as base, and
i, j,k be the projections of lon X, Y, Z then /&= ta+ jB8+Ly;  hence
A h = volume of prism =(iJ + jJ 4+ LK)S.

The projections of a tract on the axes, |l to the Cd. planes, resp. the pro-
Jections of a plane figure on the Cd. planes, || to the axes, are called Cds. of
the tract resp. plane.
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Now take the pyramid whose vertex is 0, whose base is PP, P,; it is }
of the prism with base OP,FP, and edge OF; the Cds. of the edge and the
double Cds. of the base of this prism are &, y, z, and

noAalxh [a nl¥ |5on ]W[*-
Y2 % % %4 Iy Ys
Hence by the above formula we have
60PPP,=|z y =z]|8.
L N &
o i W

To move the origin to (x;, ¥;, 23), it suffices to put x — z; for z, y — ¥y,
for y, = —z; for z, etc., and write
6 OPFP,P,=6 PP,P,P;=|0 x —x3 y —y; 2z —2z|8.
0 r—2 y1—ys 71—
0 =25 ya—ys zn—2
1 Ty Ys 2z

On adding the last row to each of the others there results
EPPIPQPSE 1 =x Y Zz S:ﬁT.
1 2 5 3

s Y2 &
I3 Ys 2

When, and only when, this six-fold tetraedral volume is 0, does the
point P(x, y, z) lie in the plane of P P,P,; hence T=0 is the Eq. of
the plane through the three points P,, P,, P,.

Pl i

5. By projecting a point || to Z (say), its X and Y are not
changed; i.e., the x and y of a point are the ¥ and y of its
X Y-projection, and are the same for all points of a RL. || to
Z. To find, then, the  and y of a point cutting a tract I, P, in
ratio n; : n,, project the tract on XY ; the Cds. of the projection

are the Cds. sought:

S n,x, + MI, » iy, + '"'2'!!1, and 80 =z — mz, + n.z
n,+ n, n,+mn, n, +n,

Transformation of Co-ordinates.

6. For pushing the axes, not changing their directions, clearly
r=a'+20 Y=Y + Yo z2=2 +2.
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If the axes (rectangular) be turned from the position X, Y, Z
.| L L
into the position X', Y, Z', so that the Xs X X' XY’ XZ', are
a’',a'y @', then the sum of the projections of 2, %', 2’ on X, for
any point, is simply the z of that point; or
xr = mIEf+ yFEH_!_ szH.F;
and B8O Yy = x;Er 3 yrEn_l_ zrgmj (E)
z =x'y+ y'y'+ 2y".

The nine Xs are clearly not all at will, since, if o’ and 8’ be
chosen, ' is thereby fixed ; for all RLs. sloped a' to X lie on a
cone about X, and all sloped ' to ¥ on a cone about Y, and X'
must be a common RL. of these #wo cones; the axis X' being
fixed, so is the plane Y'Z', and the choice of one more X fixes
Y and Z'. So only three of the nine can be chosen at will ;
hence there must hold siz Egs. of condition among the nine Xs.
These are
E'2+ﬁ'2+rr?=1: Er't_‘;u-l_ﬁ"i_gn_l_}"'}'”:ﬁ’

aus‘__f_ﬁﬂﬂ_l_},"ﬂ: 1, a'. am_|_ ﬁ”'Bm'f"}"”'fmz D-,
2 +BHJ'." + ?IHE =1 x nr, al'_[_ ,{;rﬂ_ ﬁ"" ?_—I'H_ }'r: 0.

The first three say X, ¥, Z are rectangular, the second three
say X', Y', Z' are rectangular, as appears from (A) and (B).

The formule for passing from X', ¥', Z' to X, Y, Z are
plainly

I &
=]

f-“"=mfr+ y§'+zz’s
Y =o'+ yB"+ zy",
zi’ — mu”l‘_i_yB”f_'_ 2"}!"”.

Accordingly there must hold these siz Eqs. of condition :
Erz _I_E.rm_l_l_lmz =1, *S_L"@f'l' a!!_BI!_I_afrf_IBr!!: 0,
ﬁri +ﬁnﬂ+ﬁnm =1, ,3’*1"-{— B"- 4"+ gM, y"=0,
_rl': +I”2+ }:HFfz 1; 1'"":_"‘:"" 1"”'5""'?”" Zlm= 0.

These six Eqs. must then be equivalent to the first six : this is
clear geometrically, and may be proved analytically thus :
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Form the determinant

C=| a a' o"]|;

by solving the first three Eqs. directly, we get
C-2'=A'z + By 4+ Tz, and so on;

hence, A'=d'C, B'=pg'C, andsoon; now
‘3 -A'4 a' Al a''- A"'=C, and five other like Egs.,
while Ec" B'+ E.”- B4 E'”- B'"'=0, and five other like Eqs. ;

whence, on replacing the co-factors, A', etc., result the twelve
Eqgs.

By squaring €' according to the Multiplication Theorem of
Determinants, it is shown that C*=1; lhence C==+1,
aﬂmrding, namely, as X'Y'Z' is congruent or symmetric with
XYZ; i.e., according as, when 4 X' falls on +X and 4+ ¥
on + Y, +Z' falls on +Z or —Z.

The formule (E) hold even when X', Y', Z' are not rectan-
gular, since this rectangularity was not assumed in their
deduction.

The general formule for oblique axes are found, precisely as
in Plane Genmetr_g.' to be

P
fm, Yyz)|=a’ {m’ Yz} + v.(y’'s J#}H— (@, y2)|,

and two got by permuting 2, ¥, z. The nine coefficients are
again connected by six Egs. of condition.
Note that the Eqs. of Transformation are linear in Cds.

EXERCISE.
~ . . :
Show that pp,|* = |aB,* + |By1|* + | Meel?

The Plane and the Right Line.

7. A single Eq. in x, ¥y, z represents a surfuce. For we may
assign all real pairs of values to = and y (say), and reckon
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the corresponding values of z. The pairs (2, ) fix points in
X Y'; over each such point suppose the fixed value of z erected,
laid off parallel to Z; the ends of all such 2’s will lie on and
determine the surface, which of course may be real or imag-
inary, continuous or discontinuous.

Two Eqs. in x, y, z represent « line. For all points whose
Cds. satisfy both Eqs. must lie on both surfaces picturing the
two Eqs., hence must lie on the intérsection of the surfaces,

i.e., on a line.

Three Eqs. in z, Yy, z of mth, nth, resp. pth deqgree, represent
mnp fized points. For the three Eqs. are fulfilled at once by
mnp triplets of values, each pictured by a point.

Transformation of Cds. does not change the degree of the Ey.
in , Y, z. For the Eqs. of transformation are linear.

8. A line is fixed by the Egs. of any {wo surfaces through it ;
the simplest surfaces are generally two eylinders || each to an
axis. The Eqs. of these cylinders are the same as the Eqs. of
their intersections, each with the plane of the other two axes,
since the third Cd. is the same for every point of any given
element of one of them. They are clearly the projecting cylin-
ders of the line, and their intersections with the planes are the
projections of the line on those planes. Hence, as Eys. of ¢ line
may be taken the Eys. of any two of its projections, on the planes
of two axes, || to the third axis.

If the line be a RL., the projecting cylinders are planes, and
the projections are RLs. whose Eqs. may be written

y=sx+b, y=tz+b z=uz+4a,

any two of which (generally the last) may be taken as Egs. of
the RL. Clearly, «, ', b are the intercepts of projections on
X, Y, while s, f, u are direction-coefficients.

Symmetri¢ Eqs. of the RL. may be got thus: Be (x,,¥,,2)
and (z,¥,2) a fixed and a variable point on the RL., d their
distance apart, and let its direction-cosines be a, ,E?, y; then
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d__,x_"ﬁl__*y""’yl_z_zl

— L]

o B Y
or 3’=“’;+Eda y=y:+§dr 3=21+‘_}'d-
In n:~x1=y—y1=z—zl
a B Y

instead of a, B, v, may be put any three proportionates, as A, u,
v, 80 that

T—o Y—W%h_=z2—2
A I .

If Aa=p:B=v:y=f, then F=VAN 4|+
On comparing the symmetric and the tangential forms, we see
s=f:a, t=B:y, u=a:iy;
whence Be=1 2:8;

If the RL. goes through (@, ¥s, %), then

Ly — &y Yo—U 2Zg—2,,
— —— ’
@ B Y

i.e.y @y — Xy, Yo— Y1y 2 — 2, are proportional to a, B, Y3 hence
T —& Y—h =z2—2%
- —_— e El
Ta— T, Yo Za— 2

Eq. of a RL. through two points.

9. Two RLs. in space may or may not meet; if they do, the
z of the intersection of their projections on YZ must be the
same as the z of the intersection of their projections on ZX:
i.e., if y =tz + by, x = w2 + a,, and Y=tz + by,
r=1u2-+a be the RLs., then

by—by: ity —to=a; — ay: Uy — u,.

Or the four Eqs. must hold at once; this yields the same
result in a determinant.
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If two RLs., [, and 1, are directed by a;, By, y1 and ay, By, ¥
or by their proportionals A;, u;, v and A,y ps, v;, then
% Mds + paps + vivy
3L = = 2 =
1z 192 + }_?1)_92 + Yiyz '\/“"]2+F12+ Fli"'\f)lgg"' F'S'ﬂ_l" I«"f
_ 148t 4+ ugu,
VI VI ud
If the RLs. be perpendicular, then
Mz + paps F vy = 0=1 4 4;f; + wu,.
If the RL. (¢, ) be L to (¢', '), then

14t uu'=0; (1)
if it goes through (z,, ¥,, 2,), then

h=tzn+bd x=uz+a; (2)
if it meets the RL. (¢, «"), then

b—b:it—t=a—d:u—u' (3)

These four Eqs. fix the values of ¢, u, a, . They may be
found thus:

From (2), a= —u2, b=y —tz; putthese into (3),
whence

(W + ad'— )t — (s + ' —yp)u=(a'—x)t'— ('—y)u'. (4)
From (1) and (4) can now be found ¢ and u, thus:
Put N=u'(u'2,+a'—x)+ t'(t's + b'— u),
M=t —y)u'—(a'—2)t'} — (u'z + a'— x)),
L =u'§(a'—z)t'— (V' —y)u'{ — (('z+b'— 1) ;

then t =M: N, = 1L1N;
L M
*1=-"51—Ezu b=y1_'jrzl'
Accordingly,

z—: L=y—yp: M=2z—2z: N

is the Eq. of the L from (x;,%,%) onthe RL. y=tz+0b,
x=uz+ a.



PERPENDICULAR TO TWO RIGHT LINES. 237

The student may now easily show that the Cds. of the inter-
section are

o —(L:14t"*+u'?),
Y—(M: 144 u'?),
7 —(N: 14"+ u'?),

while the distance from (x,, ¥, z,) to the intersection is
VI M+ N : 1t u'?;
or, after simplification,

Vi(a'—at'— b — ) - (w4 @' — ) (2 U — ) B
V1024w’

10. Ifthe RL. y=itz+4+b, x=wuz-+ta, be L to the two

RLs.
y=tz+b, T=uz4+a,
and Y=tz + by T=ug+ a,
then tt+uu+1=0, tt4+uutl=0,
whence b= Uy — Uyt LUy — LUy, W =1y — by : uyly — Uty
If the RLs. be directed by (a, 8, v)s (a1, By 71)s (ags Bas ¥2) s
MieR a4 B8+ ny="0,
ae + BB + vy =0,
¢+ +y=1

From the first two Egs., on solving asto a:y and B:y, it
results that
a:B:y=Prys— Boyr: Y10 —arys: a1ffy — S,

If the RL. (¢, ) also meets the RLs. (&, w;), (% us), then

(b—=b)(u—u)=(a—a,) (t—1)
and (b—bs) (u—up) =(a—ay) (¢t —15).
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Form the determinant

D=|1 1 1
v U
t &

and denote its co-factors, as usual, by like large letters; then
bD = b, U, T, — b, o T, + (a, — a3) Uy Ui,
and so for alD.

Thus is determined the common L to two RLs.
The length of the intercept on it between the two may now
be found by finding the intersections ; but that is tedious.

»

11. The symmetric Eqs. of a RL. ity sy [P i A
x n® v
contain siz parameters or arbitraries, A, p, v, , Y1, %, which

might be called the Cds. of the RL. in Space. But they are not
independent, since four arbitraries ((Cds.), (¢, u, a, b), fix the
RL. First, A, g, v are proportional to a, 8, y, and these are
connected by the relation o+ 5°4+9y*=1; secondly, denot-
ing puz—vihy v&—Az, Ay—pz by A, M, N, we see the
relation holds : |
AA + pM 4 N = 0.

These six symbols, A, g, v, A, M, N, thus connected by two
Egs. of condition, we may call Cds. of the RL.
The last three are interpreted geometrically later. (Art.25.)

12. The Eq. of a plane is of first degree in z, ¥, z. For the
Eq. of a plane || to a Cd. plane, as XY, is z=2,; this plane
may be referred to any other system of axes by a linear trans-
formation of Cds., and such a transformation cannot change
the degree.

Accordingly the Eq. of a plane is of the form

le+my4+nz4+d=0. (1)
If a, b, ¢ be the intercepts on the axes, then clearly they
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equal —d:l, —d:m, —d:n; hence they vary inversely
as I, m, n; the Eq. of the plane may also be written

TR R P 2
—+z+s=1 (2)

Conversely, an Eq. of first degree in z, y, 2, represenls a
plane. For, if d be not 0, it may be brought into form (2),
which is known to represent a plane making intercepts a, b, ¢
on X, Y, Z; if d be 0, push the origin out any distance, say d’,
on any axis, say X, by putting x + d' for  in the Eq.; then
the Eq. may be brought into the form (2), and the previous
reasoning applies.

13. Drop a L p from O on the plane, directed by a, 8, v;
then p=aa=208=cy, and on substitution results

za+yB+2y—p=0, (3)
the Normal Eq. of the plane, which we may write
J'.\": 0-

If F be the factor that turns the general into the normal

form, then
Fl=a, I'm=f, Fn=y;

PR nt) =1,

whence- F=1:VE+4+m?+ nd

and a=10:Vl+m+ nt;

and so for é‘ and e

13.* In case of oblique axes we have

abc.S:p‘f{ab.uﬁ-} M.H2+CG.¢|=
—2(ab.w|.be. x| Y + bf:.xf.cu.#;l.E-l—ca.u.H.aﬁ.w[E}}, (4)

since each is the six-fold volume of the tetraeder O—.ARC, where
OdA=a, OB=b, OC=e¢, and 41(, _]f_*, Z are cosines of the diedral Xs

aslong X, Y, Z. Call the &8 BOC, CO4, AOB the planar intercepts of the
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plane whose arial intercepts are a, b, ¢, and denote them doubled by
A, B, C; then

abe . S=p . JiA2+ B* + C*—E{AB.E+BC.§+CA.I}}. (9)
In (4) put for a, b, ¢, p their values —-—%, = ; —'E, ~ Fd ; hence
m 7

F=8: il x"+m 4y +n.0|
—2(l.xIm.¢|.Z+m.d|l.n. 0| X+n.0|l.x| )} (6)

The analogy of this to the value of F in plane geometry becomes plain
on writing each in determinant form :

Fi=|1 wl:10 I m}; F”-_—l:fﬂ:" 0O I m n|. (7)
e 1l |1 1 el L S
% w1 ¥ x 2| [mw 13
nyox 4

By reasoning like that in plane geometry it is now shown that the dis-
tance of (x, y, =) from the plane ra+ yBt+zy—p= 0 is ra+ yB+ zy—p,
or (z,y,z) is distant N(x, y, 2z) from N{(z, y,z)=0.

The whole body of reasoning as to normal Egs. of RLs. may now be
repeated as to normal Eqs. of planes; and as there the Abridged Notation
issued in a system of homogeneous triangular (or trilinear) Cds., so here it
issues in a system of hemogeneous tetraedral (or quadriplanar) Cds.; and
just as the first could also be interpreted as [ine-Cds., so the second can
also be interpreted as plane-Cds., a thought that cannot be developed here.

14. We have found the Eq. of a plane through three points
and the six-fold volume of a tetraeder, given by its vertices, to
be respectively

iz y z 1|=0, and 6T=|z y =z 1|8 (8)
o non 1 *t h A 1,
lte ¥y 2 1 % Yo 29 1
X3 Yy 7 1 | % Yz 2 1‘

These two Eqs. are really one, the first merely saying that
the volume is 0 when the fourth point (z, ¥, 2z) is in the plane
of the other three.

The same six-fold volume can be expressed as the product of
the double base P, P, P, by the L p from P on the plane of the
base. This p is found by bringing the Eq. of the plane into
the ncrmal form, by multiplying the determinant by #, where
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F=8:ya ' +y ¥+ o
—2(2" x[- Y Y| Z 4y y[2" 0| X+2" o]’ x| Y) §,

where o', y', 2’ are co-factors of 2, y, z in the determinant.
Hence, the radical «/{ } is the double area of the A P,P,P..
We note that 2'-x|, ¥'-¢|, 2'- w| are the projections of P, PP,
on the Cd. planes || to X, Y, Z; i.e., they are the Cds. of the
Ay also, the negative terms are their (so-called) inner products
in sets of two; hence,

The squared area of a A is the sum of its squared Cds. plus
twice the sum of their inner products, in sets of two; or

The squared area of a A is the inner squared sum of its Cds.

The Cds. of the tract P P, being the differences of the Clds.
of its ends, by observing signs, the square of the tract may be
expressed as above.

15. The direction-Xs a, B, y of a L on a plane are called the
Position-Xs of the plane; clearly they are also the diedral Xs
of the plane with the Cd. planes, since the X between two
planes equals the X between s on them; they are the comple-
ments of the s between the plane and the Cd. awes.

The position-cosines of a plane are 1:vVZ+mi+n, and
two like ones.

15*. In case of oblique axes, the position-cosines are still Fl, Fin,
Fn, but the position-(s no longer equal the diedral Xs. DBut any diedral
. as between the plane and XY, equals the X between the L p on the
plane and the L p,on XY. The direction-cosines of p are a, B, ¥, or Fl,

Fm, Fn; those of p; are 0,0, §: w (see Art. 4*); put these values in (C,*):
Fi, F'm, Fn for a, B, 7 and 0, 0, §: w for @ B 7o and get

~ T
Eﬂ=}£,={w["ﬁ:—x”Fm—W’ﬂ}:S.mr

= Fin (1—o?) —m (x— ) =1 (b —wx)}: 8. w|.
‘The cosines of the other diedral X's are got by permuting symbols.
16. The X between two planes =, m, whose Eqs. are

he+ iy +nz+dy =0, Lax+my+nz+d,=0,
equals the X hetween the Ls on the planes; hence
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g
myme = (Lla+mma+nyng) :VIE+mP 402 VIF+me+ ng’.

The slope of a RL. to a plane is the complement of the slope.
of the RL. to the L on the plane ; hence, if the Eq. of the plane

be
lx+my+nz4d=0,

and those of the RL. be

T—&_Y—h__2—g

A T v
—~
wL| = (IN 4+ mp + nv) :VE+ mP 4 0® VN + p2+ V.

Hence, the two planes are L when

]

LL+ mm,+ nmn,=0.
They are || when
L, 4+ mym, -4]—“1@1':12 = V4 mP2+ 02 - VIE+ mi 4 ng,
i.e., when
(hmg — lymy)* 4 (myny — mgny)® 4 (e — moly)* = 0.
This sum of squares is 0 only when each is 0; i.e., only

when
Lilb=m;: me=mn,: n,.

This condition is, indeed, geometrically evident, since it
declares only that the position-cosines of the two planes are the

same.
The plane and the RL. are || when

AN mp+nav=0.
Thev are L when
N mp 4 v =VE+m?+ 02 VA + u? 2
i.e., when

l:iX=m:p=n:v.
Hence lr4+my+nz4+d=0

P I PN el
m n

and
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17. To find where a line meets a surface, replace fwo of the
Cds. in the Fgq. of the surfuce by their values in terms of the
third, taken from the FEgs. of the line; thus is got one Eq. in
one Cd., whose roots are Cds. of the points of meeting. The
number of these roots cannot be greafer than the number of
common points, though it may be less, since to any value of z
(say) may correspond several values of x and y. If the Eq. in
the third Cd. reduces to 0=0, 1i.e., is satisfied for every
value of that Cd., then, and only then, the line has all of its
points on the surface ; i.e., the line is on the surface.

In the special case of the plane Ilx+my+nz+d=0 and
the RL. wy=t:4+0, zx=uz+a we get

(L 4+ mt + n)z + (la 4+ mb + d) = 0,
and this reduces to 0=0, is satisfied for every 2z, only when
lu+mt+n=0 and la+mdb+d=0,
which Eqs. say the RL. lies in the plane.

18. The common point of three planes,
Lha+uy+ iz 4+d =0,
0 4 Mgy + nz 4 dy = 0,
L+ my+nz +ds =0,
is found by solving the three Egs. as simultaneous,; the results

are
&Tr= —"i'firl m2 nai: |I!I_|_ mg ﬂsl’.

y: —'lrrl l"f_;_ ﬂsl: [El mg 'ngl,

z =—|l) mydy)t|l myng|.
Hence, if |l,m.n;| =0, the common point is at «, the in-
tersections are || RLs. ; if, besides, a numerator, as |, m,d;|,
be 0, the common point becomes indefinite, the intersections fall

together, the three planes pass through the same RL.

19. If four planes meet in a point, their four Eqgs. are satis-
fied by the same triplet of values «, %, z; this can be when, and

only when, 1, m, n, d,|=0O.
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Or we may reason otherwise, thus: If = =0, m=0,
73 =0 be three planes, then A7 + Amo+ A7y =0 is a plane
through their common point; for this L. represents a plane,
being of first degree in «, ¥, z; and it is satisfied by that triplet
of values z, ¥, 2, that satisfies the three at once.

Four planes = =0, m=0, m=0, ==0 meetina
point when four multipliers A;, As, A5 Ay, can be found such
that Ay + Ame 4+ Aoy + A7, =0 identically ; for the triplet
of values z, ¥, #z, which reduces any three of the »’s to 0, must
reduce the fourth = to 0 also.

20. If N,=0, N,=0, be normal Eqs. of two planes,
then N, —AN,=0 is a plane through their common RL.; for
any triplet z, ¥, 2, satisfying the first two Eqgs., satisfies the
third. Also, A= N,: N,; 1i.e., A is the ratio of the distances
of any point of the third plane from the two base-planes, or A is
the ratio of the sines of the slopes of the third plane to the base-
planes. Hence, N, —N,=0 resp. N+ N,=0 isthe
inner resp. outer halver of the 2(s between the base-planes.

21. To find the direction-cosines of a RL. halving the X
between two Il Ls directed by a, 8, y and o, ', ¥/, take two ||s
to the RLs., through the origin, and on each take a point dis-
tant 2 from the origin ; the Cds. of the points will be 2a, 2/,
2y and 21:_;’, 2@', 21:’: the mid-point of the two will be (a+ E'ﬁ
B+ B's y+7"), and will be on the halver sought; hence

x Yy z

atd B+B y+y

is the FEq. of the halver; hence q+c_z', §+§', 1’+?r1 each
divided by '\/{g -{—1_1'}"-#_@-]- {3")_*_—'{:_(}r+}r'}2 are the direction-
cosines sought. The radical / reduces to

'\fﬂ-i-fi;_b:ﬂ'g,

where ¢ is the X between the RLs.
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To find the direction-cosines of the outer halver, it suffices to
change the signs of &', ', ¥'; the radical +/ then becomes

== ()

22. A system of planes through a point may be called a pen-
cil of planes; for a system of planes through a RL. no fitting
name has yet been used in English; perhaps cluster would
answer best to the German Bueschel, suggested by the phrase
in Architecture, clustered column.

The common RL. of a cluster may be called its axis. Any
two planes may be taken as base-planes of a cluster.

To find what plane of a cluster
L 4 myy 4 nz 4+ dy — XN(Lxe + may + nz 4+ dy) =0
islto lz+my+nz4+d=0, we have at once, by Art. 16,
I(l, — ML) + m(my — Amy,) + n(n; — Ang) =0,

whence A\ is to be found, and, on substitution, the Eq. of the
planc is found to be

(Il + mmy + nny) (e +my + nz + d;)
— (U, + mm,; + nny) (L + may + ngz + dy) = 0.
The position-cosines of this plane are proportional to
m (limy— lymy) — n(nydy — nid,),
and two like expressions.

But I, m, n, are proportional to the position-cosines of the
given plane, say mg+y§+zr-p=0, and the paren-

theses are proportional to the direction-cosines of the axis, say

/
m:’m'=?ﬂ"ﬁ;y'=z;x ; hence the above Eq. of the sought

plane may also be written
(2—2) (By' £+ @ —¥) (yo'—y'2)
+ (2 —2") (aB'— 'B) = 0.
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23. To find the plane through either of two RLs. || to the
other, regard the RLs. as the axes of the clusters II,— AlIl,=0,
Iy —«xII,=0. The two || planes of these clusters are the
planes sought.

Dy Art. 16
I}“.ﬁiﬁ?:m]“lmgzﬂl'—&ﬁz:r (sa?).

Clear each of the three Eqs. and solve for A; so we get
A=\l mgn,!: |l mgny,
wheuce I, |1 mg ny | — T0, |1 g ny|= 0,
and advancing the subscripts by 2,
I | 1, my n,| — I, |l my g | = 0,
are the planes sought.

Like results are reached by this reflection : The common L to
the two RLs., say

I (] r " ) n
r—mr — % e — 2 £ — X —_— g—2
=__?f "r=—-—ﬂﬂd '—'y Y =

ol ﬂr _}" a" T B” e ,rrl' 3
is clearly L to the plane having the direction of both, || to
both or through either || to the other; the direction-cosines of
this L have already been found proportional to B'y"'— B"y', ete. ; |

hence the planes are
(z—2') (BY'—B'"Y) + (3 —y") (ya"—y"2")
+(2—2') (a'B"—a"B) =0,
and (z—2") (B'y"—B"y) + -

The distance between these planes from any point, as (2',7',2'),
of the first to the second, is plainly the (shortest) distance
between the RLs.; the same is got by reducing the Egs. to the
normal form, dividing by the second root of the sum of the
squared coefficients of x, 7.z, and then putting o', #', 2’ for z,
¥, z in the second Eq. ; now that sum is the squared sine of the
X between the RLs. (Exercise, Art. 6); hence, calling the
distance d and the X ¢, we have
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a- ¢ =(@—2") (BY'—B"Y) + (/' —¥") (¢'a"—"")
s (3 _zlr) (E@”*‘E”@')-

This expression, called by Cayley the moment of the two
RLs., may be written as the difference of two determinants,
thus :

'l

;;n
¥ |

Hi

d-¢| =

?

! iy

hlp-_
o 'R

ik
i

Y

2 ro M

i
y' B
7'y

~ 1
=t 1

|
which clearly
=__§E-'(§"z” I H)_I_ﬁf(?”m” H' H) +If(a” 1 @H‘mﬂ)

+a" (B —yy) +8" (%' —a ) +y"(e'y'~g7)}.

Now the Greek letters are the direction-cosines of the two
RLs., and are but special values of A', u', +' and A", p", +'';
while the parentheses are what, consistently with Art. 11, must
be denoted by A", M", N" and A', M', N'; hence, disregarding
sign,

d'¢.]=}L'J\.”-f—p'M”-]-v’N”+A”A'+p”M’+v”1\”,

which expresses the moment of two RLs. through their Cds.

24. To find the volume of a tetraeder fixed by four planes,
II, =0, etc., it suffices to repeat, step by step, the reasoning
in Plane Geometry as to the area of a A fixed by three RLs.

The result is quite of like form :

6 T: |31m2 Mg d.‘la : [Eﬂ Titg ﬂ‘r'lglmgﬂill'1 flmgﬂl[-|31m2ﬂ3[+

25. It is easy now to interpret A=p—yy', M and N.
! ! -
Let 2= ¥ ¥ .2 2 be the RL., tllen—r-m:ir:—z-ma
: B 7 -

is the Eq. of the RIL. through the origin and (2', %', 2");
hence «'=a's, y'=p9, 2'=9% and A= =3(By'— vB'),
M =38(ya'—y'a), N=38(af'—a'B). The multipliers of & are

the position-cosines of the plane through the two RLs. ; i.e., of
the plane through the given RL. and the origin ; or, they are the
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direction-cosines of the RL. through the origin L to this plane,
and hence A, M, N are the Cds. of a point on this RL. distant
8 from the origin; i.e., the Cds. of a point on this RL. as far
from the origin as (', ¥', 2') ¢s.

EXERCISES.

1. The tract PP, is cut at P'in ratio n,:n,, P’ P, is cut at P in ratio
n, + ny:ing, PP, at P! in ratio n, + n, + ny:n,; find the Cds. of P, the
centre of proportional distances of P, P,, P;, P,.

2. Find distance of (r, y,2) from a RL. through O directed by a, 8, ¥.

3. f m=0, m,=0, M;=0, M,=0 do not meet in a point, the
Eq. of any plane is of the form AIT, + AT, 4 AT, + A0, = 0.

Show that the IT’s, regarded as Cds. of a point, are proportional to fixed
multiples of its distances from the planes; the A’s, regarded as Cds. of a
plane, to fixed multiples of its distances from the points A, = 0, ete.

4. Find Eq. of : a plane through two Il RLs., a RL. through two points.
5. Show that the Eq. of a sphere of radius r, centre (r,, y,, 2,) is

.r-;t‘lx 1 ¥ uylinl‘z—zl‘: re,
6. What, then, are the Eqs. of a circle in space ?

7. Find the centres of the inscribed and circumscribed circles of a A
whose vertices are on the rectang. axes.

8. Show that the three median planes of a trieder (through the edges
halving the counter-sides or face—afs) meet in a RL,

9. Three planes through the three edges of a trieder meet in a RL.;
show that the compound ratio of the sines of the segments into which they
cut the ccunter-sides is 1; and conversely.

10. Any plane through the vertex of a trieder cuts the sides into seg-
ments the compound ratio of whose sines is —1; and conversely.

11. The 6 planes of intersection of 4 spheres meet in a point.

12. Three positive rectang. axes pierce a sphere about 0 at X, Y, Z;
X' is the pole of the circle through X, ¥, Z; the point X is carried up to
X" along the great cirele arc XX'; find how ¥ and Z move, and the
formulz of transformation from axes 0X, OY, 04 to OX', 0Y, 0Z.
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CHAPTER 1II.

SURFACES OF SECOND DEGREE.

(Quadrics or Conicoids.)

26. The general Eq. of second degree has the form
kx® 42 hay+ jif + 2 gze+ 2 fyz+ i+ 2le+2my+ 2 nz+d = 0.
It shall be referred to as F(z,y,2;2,4,2)=0, or Q@=0,
Before discussing it, certain general notions shall be premised.

A surface may be thought as the locus of a point; it may also
be thought as the locus of a line, or traced by a moving line.

Suppose two surfaces F(x,9,z;p)=0, (2, y,2;p)=0,
contain the same parameter p; for any special value of p they
fix a single line as their intersection, while various values of p
vield various such lines; by eliminating p between the Eqs. we
oet a relation holding between x, ¥, z for all points on all such
lines; i.e., we get the Eq. of the locus of the line, the surface
traced by it moving. If F and ¢ contain two parameters p and
#', they must be bound together by some Eq., as f(p,p')=0;
the number of such Eqgs. of condition is, in general, one less
than the number of parameters.

The moving line is called the generatrix (in any one position
it is an element) of the surface. The motion of the generatrix
is commonly defined as gliding along fixed lines called diree-
trices. Since the Eqgs. of generatrix and a directrix hold for
the same triplet @, ¥, z, by eliminating thesc from the four Eqs.
is got one Eq. of condition between the parameters for each
directriz; hence, when the Eq. of generatrix contains » param-
eters, it must glide on n—1 directrices.

When the generatriz is a RL., the surface is called ruled.
The Eq. of the RL. contains jfour parameters, hence three
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directrices define its motion. [Ruled surfaces that can be un-
wrapped upon a plane are called developable ; the generatrix of
such a surface always touches a fixed curve called cuspidal edge.
Other ruled surfaces are called warped or twisted.

27. A cylindric surface is the path of a RL. pushed.

Be y=tz+4+b, x=wuz+« the RL.; then, since the direc-
tion of the RL. changes not, ¢ and u are constant; let ¢(a,b)=0
be the Eq. between the parameters a and b, yielded by the Eq.
of the direcirix ; on replacing a and b by their values results

¢(x —uz,y—1tz)=0
as Eq. of the cylinder.

Or,be lz4+my+nz4+d=p, l'z4+m'y+nz4+d=p" the
Eqgs. of the RL. ; letting only p and p' vary, we keep each plane
Il to itself, and hence all the intersections ||; if &(p,p')=0
be the Eq. between the parameters, the Eq. of the cylinder is

¢ (lz+my+nz+d, l's+m'y4n'z4d") = 0.

Hence any Eq. of a cylinder is an Eq. between two functions
of first degree in x, y, z; and the converse is clear.

28. A4 conic surface is the path of a RL. turned (about a
point).

T—I ¥—U

Be o= z, 1 z—7

fixed point about which it turns ; then, just as above,

L=& Y¥—h
'#(z =% 7 —z,)zﬂ

is the Eq. of the conic surfuce (or cone). We note the Eq. is
homogeneous in Cd. differences; the converse is clear, that every
Eq. homogeneous in Cd. differences pictures a cone.

If the fixed point, or vertex of the cone, be the origin, the
Eq. is homogeneous in z, y, z; and conversely.

Both cylinder and cone are developable; the cuspidal edge of
the cone is reduced to a point, the vertex, while the cylinder is
but a cone with its vertex af oo.

=g the RL., (2, ¥, 2;) being the
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29. A surface of revolution is the path of a line revolved
about a fived RL., the axXis, to which it is supposed rigidly
attached. Or, it is the path of @ circle whose (varying) diam-
eter is always halved by a fixed RL., the axis, at right angles.

The generating circle in any position is called a parallel, the
revolving line in any position, a meridian, of the surface.

If Z ? =YY" Nh_2"% pe the awis, then lo+my+nz=p
ML T

is a plane L to i, and a:—mf+y—yf+z—zf=r2 is a
sphere about x,, ¥, 2,; any parallel is the intersection of two of
these surfaces ; hence, exactly as before,

S(E—2 +Y—Yh +2—2 W+ my+ nz)=0

is the general Eq. of a surface of revolution.

30. Returning to the Eq. @=0, we note it may be
written
(kx+hy+gz+1) 2+ (hx+tjy+ fz+m)y
+ (gx+Sfy+iz+n)z4 (le+my+nz4+d)=0. (1)

The parentheses may be called, in order, @., Q,, @,, Q..

Again, we note there are ten coefficients; but, by dividing
by any one, the number is reduced to nine ; these may be deter-
mined by nine independent Eqs. ; hence, nine simple conditions
are needed and enough to determine a quadric.

To pass to || axes through a new origin, 2', 3/, 2/, put z 4 2/,
v+y', 2+ 2 for x, y, z; then, by reasoning quite like that in
Plane Geometry, the result is seen to be

ka® + 2 hay + jy* + 2 gz + 2 fyz + i2°
+2Q.)-24+20Q,-y+2Q. 2+ Q'=0, (2)
where Q.= ka'+hy'+ gz'4+ 1, and so for the others.

We note that the coefficients of terms of second degree

change not.
When, and only when, all the €’s vanish, does the Eq. become
homogeneous in z, ¥, z; but then it represents a cone through
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the new origin ', %',2'. Now Q'=Q'.-2'+Q',-¥y'+Q".-2'+Q',;
hence, for @',, @',, @'., @' each to vanish is the same as for

"es @y @2y @1 €ach to vanish; and these four vanish for the
same triplet ', ¥', 2' when, and only when,

A=|k h g 1 |=0,
h § f m
g f i mn
I m n d

Hence, ©@=0 represents a cone when, and only when,
A =0, This A may be called the discriminant of @ = 0.

If A=0, then kx4 2hay+jy’+2g22+2fyz+41i2"=0,
and this breaks up into two linear factors in z, v, z; i.e., the
cone breaks up into fwo planes, when, and only when,

D=|k h g|=0,
h j I
g f 1

as was proved in Plane Geometry. Hence ¢ =0 represents
two planes when, and only when, A=0, D=0.

aA. If Q.=0, Q,=0, @.=0, but Q'(or ,)30,
then if any triplet (z, y, z) satisfies the new Eq., so does the
counter-triplet (—x, —y, —z), since the Cds. appear only in
pairs; 1.e, if any point be on the surface, so is its counter-point
as to the new origin; i.e., the new origin halves every chord
through it, and is the centre.

The Cds. of this centre, or z', %', 2', are found from the three
Egs., @Q.=0, @,=0, @.=0 tobe L:D, M:D,
N:D. Hence, if D;l}, the centre is infinity, and the sur-
face is centrie; if D=0, the centre is af oo, the surface is
called non-centric.

One or more of the numerators L, M, N may vanish along
with [); the centre is then indeterminate.

In case Q' alone =0, the origin (2', ¥', 2') is on the sur-
face. Call the sum of the six terms of second degree §; then
the Eq. becomes
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8 +2(2Q. +yQ, +2Q.)=0 3)

Draw through the origin any RL. z:a=y:B=z:y=p.
To find where it meets the surface, replace z, ¥, z in (2) ; hence
3p°+2(2Q. +BQ, +yQ')p=0* (4)

One root p; of this Eq. is always 0; the other, p,, is also 0
when, and only when,

aQ. + B8R, +yQ.=0,
or when z-Q.+y-Q,+2-Q.=0; (3)
i.e., the RL. meels the surfuce only at the origin, and then in
two consecutive points, when, and only when, it lies in the plane
whose Eq. is (5).

A RL. meeting a surface in two consecutive points is tangent
to the surface ; the plane containing all tangents to a surface at
a point is tangent to the surface at that point. Hence (5) is
the plane tangent at the origin.

To find the Eq. of this plane tangent at (2, %', ') in terms
of the old Cds., replace z, y, z by z — &', y — %', z—2'; hence,

(#—2a)Q.+(y—9)Q,+(=—-2)Q.=0. (6)
Add '@ +y'Q,+2Q.+ Q1=0,
since (', ¥', z') is on the surface; hence,
2Q, + 9@, +2Q, + @, =0
=2'Q, +2'Q, +2'Q: + @; (7)
or, F(z,y,2; 2y, 2")Y=0=F(z,y,2; z,4,2), (T%)
is the Eq. of the plane tangent to F(z,y,z;,%,2)=0 at
(@', y',2).
32. The meaning of the fact that this Eq. is like-formed as
to x, y, z and ', %', 2’ is quite like the meaning of the like fact

in Plane Geometry, and is developed in like way. In fact, if
(2'y 4", 2") be not on the surface, the Eq. still represents a plane,

* = is what § becomes on putting a, B, v for z, y, 2.
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being of first degree ; also, if a plane through (2', %', 2') touches
Q=0 at (z,y,2),its Eq. is F(x, y, %43 2, y,2)=0, and
hence F(xy,¥,2;2',%',2')=0; but this Eq. also says that
(1, 41,2y) Ison  F(x,y,z;4',y,2")=0: hence this last Eg.
is that of a plane through all points of tangency of planes
through (&', %', 2')- Such a plane is called the polar (plane)
of (z',y',2') asto Q=0.

33. Hence it appears that all fangent-planes, and hence all
tangent-lines, through a point, touch a quadric (surface of sec-
ond degree) along a plane-section of that surface. But a plane-
section is clearly a conic; for the section made by the X Y-plane
is found, by putting 2z=0, to be the conic

k2?4 2hxy + jy + 2l + 2my+ d = 0,

and any plane may be taken as X Y-plane without changing the
degree of the Eq. or its general form. Hence all tangents
through a point, or the tangent-cone through a point, touch the
quadric along a conie.

We may note in passing that || plane-sections of a quadric
are similar conics. For they are got by giving different con-
stant values to 2, as ¢, ¢/, etc; but these do not affect the first
three terms of the conic, on whose coeflicients alone, k, /&, j, the
shape of the conic depends.

34. The whole theory of poles and polars, since it depends
solely on the symmetry of the Eq. of the tangent-RL. resp.-
plane as to the current Cds. and Cds. of the pole, may now be
repeated from Plane Geometry.

Poles lving each on the polar of the other are conjugate.

Planes each through the pole of the other are conjugate.

Tangent-planes along a conic on a quadric go throvgh a
point.

Poles of planes through a point lie on a plane.

As a pole moves about on a plane, its polar-plane turns
about a point; as a plane turns about a point, its pole moves
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about in a plane. A tract from a pole to its polar-plane is cut
harmonically by the quadric (referee).

35. If (L: D, M: D, N: D) be taken as pole, then Q',, @',
@', vanish, and the polaris 0Ox40y 402+ Q',=0; 1i.e., the
polar is the plane at ««. Hence, the polears of all points «l =
pass through this point, the cenire. All RLs. through the same
point at oo are ||; this point being the outer mid-point of all
intercepts (chords) of the quadric on these RLs., their inner
mid-points lie on the polar of the point at oo ; this central plane
accordingly halves all || chords through its pole (at «); i.e.,
halves all its conjugate chords. Hence it is called a diametral
plane. Among all these chords is one central one, which is
therefore a diameter conjugafe to the diametral plune. The
section of the diametral plane, being a conie, itself has an « of
pairs of conjugate diameters; any one of these forms with the
common conjugate diameter a {riplet of conjugate diameters;
the three planes fixed by the triplet of conjugate diameters form
a triplet of conjugate diametral ~lanes. Each plane halves all
chords || to the intersection of the other two.

The poles of a system of || planes lie on the diameter conju-
gate to the planes. The central distances of a pole and its polar,
measured on the diameter through the pole (conjugate to the
polar), have for their geometiric mean the half of that conjugate
diameter. Tangent planes at the ends of a diameter are || to
its conjugate diametral plane.

36. The notion of diametral plane may be got otherwise,
thus :

Be m-—a:’_-zy—g; _2—z i
2 B Y
or e=a'+ap, Y=Y+ Pp, 2=2"+yp
a RL.; combining with the Eq. of the quadric, we get
30°4+2Tp+Y=0; (1)

when = has its former meaning,
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T=Q.-a+ Q,-B+ Q':‘}’:
and, lastly,
Y=0Q.-2'+Q,-y+Q.-2'"+ 2" +d.

Eq. (1) has two roots, p;, p,; i.e., every RL. meets a quadric
in two, and only two, points. These roots are counter when,
and only when, T=0; Ii.e., fora, g, vy held constant (for
Il RLs.), the intercept or chord of the quadric is halved by
(=', ¥'s &) s0 long as the point (o', y', 2') lies in the plane, T=0;
this latter is the Eq. of a plane, being linear in o', ¥/, 2'.

From the Eq. of this diametral plane,
T= Q':‘E"f_ Q'j'._ﬁ-l- Q'z'}' = 0!

it is seen that all diametral planes form a peneil through the
intersection of Q. =0, Q,=0, @Q.=0; i.e., the centre.

37. To find the mutual slope of conjugate plane and chords,
put o, 7, v, ¢ (read koppa) for ka+hB+gy, ha+jB +/75

ge+B+iy, lat+mB+ny; thenis
T=o2'+ 1y +v2' +7=0,
and the position-cosines 5", @’, :f* of this diametral plane are
o'=c:R, B'=r:R, y=v:R, where R'=c¢4 242
Hence, if ¢ be the slope in question,
¢l=0a'+ BB +yy'=(ca+718+vy): R=3:R.
The important question arises: Are conjugates ever perpen-
dicular? If so, ¢=190°, ¢|=1, 3=R, a=d, B=4p,
y=1y'; whence,
a=oc: R, B=7:R, y=v: R; (1)
or, (ca+ 78+ vy)a=o,
(ca+78+vy)B=r,
(0a + 78+ vy)y =v.
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Here then are the three Egs. to determine the e, 8, v of a
chord L to its conjugate diametral plane; there is a fourth Eq.
connecting them, a*+4 B°4y*=1, but this imposes no new

fourth condition, since it can be got from the three by mul-
tiplying by a, 8, y in turn, adding and cancelling. Actually

to find a, B, ¥ from these four Eqs. would be very tedious;
it is better to determine I or =, and thence a, 8, y. On
replacing o, 7, v in (1) by their values there result

(E—R)E.+fe.,fé‘+gr=0,
ha+ (j— R)B+fy =0,
ga+JfB8 + (i— R)y =0.

Divide in turn by hAg, fh, gf; add in turn a:f, B:g, y:h;
put 4, B, C for

also put Ufor a:f+B:9+y:0;
hence result U=a(BR—A4):hg,
U=p(R—B):sh,
U=y(R—C) :gf;
or, a=hgU: (R — 4),
B=srrU: (R — B),
y=a/U: (R—C).
Squaring, adding, and re-membering a*4 B2+ =1, we
gel
1: U=~/§kg: BE—A +f:R—B +gf:RBR—-C}: (2)
and on dividing in turn by f, g, &, and adding, we get

_hg U Jh U qf U

f L]
Um— i g—aty "E—ats F=¢
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1=h_g-_1—+&f 1 +gi 1 "
f'R—4 ¢ E—B" R "E=C

or U=0. (3)

On multiplving by (BR—A)(BR—B)(R—C), and by
x=1:hgf, results

(R— 4)(R—B)(BR—0)

whence

{.c_ t 1 1 }mg
! S (B—4) ¢(R—B) R(R-C) ’

This Eq. is of third degree in R, hence has at least one real
root. 'To decide about the other roots, suppose x4 and
A< B< C; then, calling the left side of the Eq. E, we see
that

for R=—«, EFis —; for-r R=A, Eis —;
for R=B, FEis +; for R=C, Eis —;

for R= 4 oo, E is 4.

In case x is —, a change of sign in E takes place between
R=—« and R= A, instead of between BR= C and R= w.
In any case E changes sign thrice as R passes through real
values from — o to 4o ; i.e., in any case the Eq. E =10
has three real roots: R,, R,, R;.

These real values of B give three real triplets of values of
a, B, v; hence, there are, in general, three, and only three,
diametral planes .l to their conjugate chords. They are called
chief (or principal) planes of the quadric.

38. Each of these roots R,, R,, R; must satisfy Eq. (3);
hence result three Eqs.; take second from first, and multiply
bhv kqf; hence,

g I
Rz‘—Rl{ (Bi—A) (Bi—A) T (Bi-B) (B—B)

7 ~
tE=O@E=0) }=o.
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Since R,— R, cannot =0, the parenthesis { } must =0;
and two like Egs. are got by permuting the indices.

Now '5_11=h9U:1 : (.RI—A),
pr=JhU; : (B, — B),
Nn=gU : (B,—C);

and so for the indices 2 and 3. Calling the three directions of
the diametral planes, or what is tantamount, of their conjugate
chords, d,, d,, d;, and dividing by the U’s, since they can

~~ ~~ ey
none of them =0, we get dd; =0, dyd;=0, dyd; =0} i.e.,
the three chief planes of a quadric are 1 to each other.

39. In the special case U=0, follow also R=A4A=B=C};
hence,

k=.A.+I-?1 ﬂ'_—_A-E.-[".II.gU; R=A+W1

whence U—fU%=0, U—gU?B=0, U—hrU=0.
Hence a=1:fU, B=1:9U, y=1: hU, or U=0.
Squaring and adding the first three Egs., we get
U =~/{15° + I + gf% : haf.

This is the same value of U as is given by Eq. (2) when
A=B=C; but besides the triplet a, B, y thus got, the prc}h-

lem is solved by any other triplet o', 8', y' that makes U=
or makes +'8r+~}l = 0. This Eq. is satisfied in an o of
ways and whenever U(oa'+ 88"+ vy')=0, since 1:f= U,
1:g=UB, 1:h=Uy. ]
Now U is here not = 0; hence
aa'+ BB'+ yy'=0;

i.e., every direction L to the direction (a, 8, y) is a chief
direction.
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It is easy to prove analytically, but it is also clear geometri-
cally, that this special case is the case of surfaces of revolution ;
the direction (a, 8, y) is that of the axis.

If k=j=i and A,=g=f, the surface is a sphere;
every triplet (a, 8, y) fulfils the conditions, every direction is a

chief one.

40. Returning to the Eq. of a diametral plane 7T =0, on
putting for the @’s their values, it becomes clear that a triplct
of conjugate diametrals are || to the Cd. planes when, and only
when, h=0, g=0, f=0, the reasoning being quite like
the corresponding in Plane Geometry. Hence, by choosing as
Cd. planes three planes || to a set of conjugates, we make the
terms in zy, ¥z, zx vanish. This can always be done.

Again, by choosing the centre as origin, we make the terms
in , y, 2 vanish. This can be done only when the centre is in
finity. But when the centre is at o, the oricin can be taken on
the surface, making the absolute vanish, and also the term in
z*, a diameter being taken as Z-axis. Hence the forms reduce

to
k24 jf+i?=d and k4= 2nz.

When d and »n are not =0, the varieties of these are

2 . ¥ 2 i A

ctyte=th gtp—g=*b
and _m—-;tf-xﬂz.

a b

The first is an ellipsoid : real resp. imaginary.

The second is an kyperboloid : single resp. double.

The third is a paraboloid : elliptic resp. hyperbolie.

When d=0 or n=0, the Eq. becomes homogeneous,
and so represents a cone, and. in case another coeflicient van-
ishes, still more specially a eylinder. These limiting cases the
student himself can readily trace out.

The rectangular conjugate diametrals recommend themselves
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as Cd. planes; to indicate that oblique conjugates are chosen,
it suffices, as in Plane Geometry, to accent the constants a,

b, c.

41. Returning to the Eq. 3p*+42Tp+Y =0, which fixes
the distances p;, p; from (2', ', 2') in the direction (e, B, y) to
the quadric @ =0, we note that = depends only on the direc-
tion (a, 3, y), and Y only on the point (&', ¥, 2"); lence,
taking two points P’ and P", and one direction, we find the
quotient of the distance-products p,'p.': p,''p,)" is independent
of the direction ; or, taking one point and two directions, we find
the like quotient is independent of the point. Hence:

The rectangles of the segments of two intersecting chords
are proportional to the squares of the || diameters.

Tangents from any point to a quadric vary as the || diameters.

The areas of sections conjugate to a diameter vary as the
rectangles of the segments into which they cut the diameter,

Proof is quite as in Plane Geometry.

42. We have seen that the six terms of second degree are
unchanged by a mere change of origin; to find what functions
of the coefficients are unchanged by a change of awes, proceed as
in Planc GGeometry, thus:

Let the coefficients k, j, .... ¢ change into %', j', ..., ¢, and
the sum § of the six terms change into §'; then §=.8"; also

2+ 2wy + Y + 2¢zx + 2 xyz + 2°
=a"+ 202y + ¥+ 2¢2'a"+ 2 x'y'd + 27,

since each is the squared distance I® from the common origin
O to the same point P(x, y,2) or P(a', 3',2"). Hence S+pD?
is not changed by change of axes; hence the values of p which
make S+ puD?=0 are the same for all axes, and specially
the values of p that make S + puI)P resoluble into two factors of
Jirst degree in (x, 7,2z) are the same for all axes. This resolu-
tion is possible when, and only when,
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ktp htpo g+py|=0,
ht+po j+p  Sf+px
g+py fHpx t+p
as was proved in Plane Geometry ; for the form of S4-ul?=0
is the same as that of F(x,y;x,y)=0, asisseenon putting
z=1. The roots of this cubic In g, called discriminating cubic
when o=y =y=90°  are the same for all axes; hence, on
making the coefficient of u* 1, the other coefficients must be
constant for all ares.
They are {kj—Rk+ki—g*+ji—f7
—2[ (hi—gf) o+ (G =S+ (fh—glh)x]}: §
e x4 9 i of
—2[h(0—x¥) +g(V—wx) +/(x—yw)]}: 8,

k h gl|:8, or D:8§.
hj f
g J 1

It is to note that the binomials are all co-factors of elements
of either 8% or D.

Geometric Interpretation.

43. 1. For rectangular axes, W,y Yy X vanish, w|, ¢, x| become
each = 1, and 8° becomes 1; hence X +j+4 = constant. Sup-
pose S =1 the central Eq. of a quadric, then £, j, ¢ are the
squared reciprocals of the half-diameters ; therefore, the sum of
the squared reciprocals of three rectangular diameters of « quadric
is constant.

2. If conjugate diameters be taken as Cd. axes, £, ¢, f vanish,
and the constants are

(%j + ji 4 ik) : 87,
E-xI'+Jj-y[ +i-0f) : &,
kji : §°.
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On dividing the first by the third, we get * + i+§: = constant ;
% J N

i.e., the sum of three squared conjugate (half-) diameters of a
quadric is constant.

Extracting the second root of the third, and inverting, we get
8 :V'kji = constant ; i.e., the volume of the parallelepiped fixed
by three conjugate (half-) diameters is constant ; hence, its eight-
fold, the volume of the parallelepiped of three conjugate diame-
ters, or bounded by six tangent planes at the ends of conjugate
diameters, is constant.

On dividing the second by the third, there results

LIE <+ "b—ﬁ + of = constant ;

2
g ki gk
i.e., the sum of the squared parallelograms fixed by three conju-
gate (half-) diameters, taken two by two, is constant. The axes
of the quadric being 2a, 2b, 2¢, the values of the above four
constants are

lﬂ+l+l,, a4+ ¢, abe, ab + b + ca’.

7 oo

The third constant is abe=a'b'c'S. Hence 8ra'd'c'§S is

constant; or, since S=o|-{, (47a'b'o])(2¢"-L) is constan’.
Here the first factor 4wa'b'w| is the area of the central section
of the plane XY '; and the second, 2¢'-¢, is the projection of
conjugate diameter on the L to that plane; i.e., the first factor
is the base of a cylinder touching the quadric along a central
section, the bases themselves touching the quadric at the ends
of the conjugate diameter; while the second is the height of
that cylinder. Such a eylinder may be said to be [ to the
diameter. Hence, the volume of a circumscribed cylinder || to a

diameter of a quadric is a constant: 8 abe.

The Special Quadrics.

44, The quadric -3‘; + -g-;- +%:— =—1 has no real points,
@ 5

since the sum of the squares of no three reals can be —1.
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The section of the X Y-plane is got by putting 2z2=0; it is
the imaginary £ g+g= —1; all || sections are also imag-
inary £’s. The like may be said of sections || to the other Cd.

planes. Hence the surface may be called Imaginary Ellipsoid,
with axes 2ai, 2bi, 2¢i.

2
The sections of fﬂ-{—y;-i—-z—: 1  made by the Cd. planes

c2
5 r . W gt ml 2 2
th 1Es, Iy SRl 2 e All
are the real £'s {:F+b" bg+c? a”+c" y,

Il sections are similar £’s. Hence the surface may be called
Real Ellipsoid, with axes 2«, 2b, 2¢. We may suppose
a>b>c; le., 2a the greatest, 2¢ the least, 2b the mean,
axis. For z>a, or y>b, or z>c, the sections become
imaginary £’s; hence the surface lies wholly in the parallele-
piped whose edges are = and || to the three axes.

45. The plane sections of the ellipsoid are in general ellipses ;
are they ever circles? That they are, is made clear geometri-
cally, thus: Pass a plane through the greatest and mean axes;

it cuts out the £ ﬁ—: + i’% = 1. Turn the plane about the mean

axis, 2b or Y; the section remains an E of which 25 is still
the minor axis, but the major axis gets smafafer; when the plane

Rr

is turned through 90°, the section is the £ E:_- +— =1, of
which 2D is the major axis. At some stage 2 b must have ceased
to be minor and become major; at that stage the axes of the £
were =, the £ was a circle. To find the slope 6 of this cyclic

plane to the greatest axis, we have the Eq.

bt = (1—“2‘ .fﬂ)
a® - )

whence 0=cvVa—1:bViE—E.

Of course there are two cyclic central planes, one sloped 6,
the other — @, to the greatest axis. All planes || to these cut
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the ellipsoid in circles, growing smaller as the cyclic gets farther
from the centre, and vanishing in so-called wmbilics, or, better,
cyclic poinis, as the planes become tangents. Clearly there are
four such points.

When « =250, the ellipsoid becomes one of revolution, made
by turning the £, whose axes are 2a, 2¢, about the less axis 2¢;
the sections L to this less axis are all circles clearly, the two
series of cyclic sections falling together in them. This ellipsoid
is sometimes called an oblate spheroid. The earth-surface is
nearly such an ellipsoid.

When b=c¢, the ellipsoid, called prolate spheroid, is formed
by turning an £ about its greater axis 2a. The two series of
cyclic planes fall together L to the axis 2a.

46. An important way of looking at the ellipsoid is to look at
it as a strained sphere. Suppose a sphere of radius a to have
all its chords || (say) to Y-axis shortened in the ratio b:a,
and all || (say) to Z shortened in the ratio e¢:aj; then, if
P'(2',y',2") be any point of the sphere, and OP' be directed
by a, B, v, we shall have

z'=aa, Yy =pPa, z'=vya,

and if P(=x, y, %) be the corresponding point on the surface
got by working on the sphere as stated, we shall have

:E=£z{!., y=é’b, E=IC;
whence, on squaring and adding, results

T

't:_té' + ‘b'ﬂ‘ = "‘c”; =1,
the surface is an ellipsoid. We may call a, 8, y the ecceniric
Xs of P or OP.

Since, in the shortening prescribed, || and = tracts remain

Il and =, it follows that conjugate planes and diameters in the
sphere remain conjugate in the ellipsoid; but in the sphere con-
jugates are L ; hence conjugates in the ellipsoid correspond to
Ls in the sphere. Hence, if
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" Hr e
1€ € 3

('5'19 '5'::- '5':1)1 {‘"h f"ﬂ: 5"3) y (‘
be eccentric X's of three conjugates,

E'le" + 2’y €3¢, =0,

'y ‘f‘:f;zfmz + 3"y =0,

'E'”]L‘"l +£”rgE”g + E”I'E‘H‘3= 3

The student may now show that the sum of the squared projec-

tions of three conjugate diameters on any RL. or plane is con-
stand.

.l' f
zz
=1

47. The Eq. —F + bﬂ +5= of the tangent-plane at

(z', ¥'y 2') becomes in the eccentric form _m_{,l + ge‘ﬂ +'Ee'3 = 0.
a- - c-

On squaring and adding the Eqs. of three tangent planes at the
ends of three conjugate diameters, the lou::us of the intersection

of the three is found to be the ellipsoid -’;: z: 3,

48. The Normal Eq. of the tangent plane is
L -+ .@y + Y2 =Ds

where a, 3, y are position-cosines. Comparing, we see

px' pz
e="7 B-—bﬂ Y=t
1 2."2 yl"a" zﬁ!
ang pratrEta

7z

Hence ﬂ’ﬂ*+ﬂ’b‘+‘r’ﬂ’—pz(a2+bg+02 = p°.

Hence the Normal Eq. of the tangent planes is
ez + By + yz =Vd'a’ + U + ¥

On squaring and adding the Eqs. of three such planes mufu-
ally L, the locus of the intersection is found to be the director-

sphere FH+y¥+2=ad+bV+c.
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T N ; :
49. The quadric —; +_EF — g 1 is cut by the X ¥Y-plane
o
in an £ x:- +-%;= 1, as is seen on putting z2=0. All

|| sections are similar E’s, only larger the farther from the XY-

2 2
plane. It is cut by ¥Z in the # g_ﬂ_% =1. The | sec-
tions are similar H’s, smaller the further from Y Z, till xz=a,

. 2 2
when the section becomes a pair of RLs. g-,; ——z-g- =0. Thence

the sections are secondary H’s, flattening out towards a pair of
| RLs. as @ nears + o. Like remarks hold for sections || to
the XZ-plane. Hence this surface is called an Hyperboloid
simple or of one sheet.

By reasoning like that in case of the ellipsoid, it is shown
that this hyperboloid is cut in eircles by a central plane through
the greatest axis and sloped 6 to the mean axis, where

2 2
[Eﬂ:—cﬂ:(l—*ﬁ_g‘ﬂ—iéﬁ)i

0= cVa?— b :a Vb +

All planes || to these are themselves cyclic planes, cutting the
surface in ever larger circles. Hence, the single hyperboloid
has no eyelic points.

2
50. The quadric ﬁ;+i;£; — % __1 is cut by XY in the
a” g Co
. - = mg yﬂ - - o - L]
imaginary £ :::—+ 3 =—13; the || sections remain imaginary
2

till z2==¢; thence the E’s are real and grow ever larger,

with z nearing * o«. The section of YZ is the secondary #',
2

%—%:—1, and || sections are similar, with ever larger

axes. Like remarks hold for sections || to XZ. Hence, this

surface is called an Hyperboloid double or of two sheets.

The student can readily convince himself that the cyclic planes
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of the simple hyperboloid are also eyclic planes of the double;
the circular sections shrink into four cyclic points as they retire
from the centre.
These two hyperboloids have clearly a common asymptotic
.}?2 2-2

cone — 4 = — — =10, which bas common cyclic planes with

them.

51. The clearest notion of these three surfaces is got thus:
Turn an equiaxial #, its conjugate #', and their common asymp-
totes around the conjugate axis; the # will trace out an equi-
axial simple hyvperboloid of revolution, the H' an equiaxial
double hyperboloid of revolution, the asymptotes the common
equiaxial asymptotic cone of revolution. Now change (say
shorten) all chords L to ZX in the ratio b:a; all chords L to
XY in the ratio ¢: @ ; the resulting surfaces will be the surfaces
in question.

The circle E-; + ?_"'f =1 traced by the vertex of the revolving
a o
+ F _ o 5 Y
H is called circle of the gorge ; the corresponding E = +- i 1

is called ellipse of the gorge.

52. Passing now to non-centric quadrics, we see that the first
& %_ =4z is cut by XY in the point (0,0, 0), the origin,
@
while all || sections are E’s: real for z > 0, imaginary for z < 0.
The section of YX is the P 3 =4bz, while that of ZX is
the P o°=4az. The surface may be thought made by a vari-
able £ moving always || to XY, with its vertices on these two
P’s. The surface is called Elliptic Paraboloid; 4a and 4% are
its parameters; O is its vertex. Suppose the P ¥’ =4az to
turn around its axis, the Z-axis; the surface generated will be
the paraboloid of revolution E:: - -ﬁ =4z. Now suppose all

o e
»’s, or all chords 1 to XZ, shortened in the ratio &:a; the

S T &
surface got so is P + 5 4z,
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As to cyclic planes, we may reason thus: Turn a plane || to
XZ about the major axis of its elliptic section ; the minor axis
grows, and the £ tends to a P, as the plane turns through
90°; at some X the minor must have become equal to the
major axis, the £ must have passed over into a circle. The
slope of the cyclic planes to XY is readily seen to be @ when
0=+Vb:a, a>b.

" The student will readily see there are two cyclic points.

53. The second non-centric %’; —_ %: 4z is likewise tangent

to XY at O, as is seen on writing out the Eq. of plane tangent

at (0, 0, 0) : ff-{‘z—o-—i‘-f—i;9=2(z+0), or z=0, which is

the X Y-plane. But XY cuts the surface along the pair of
RLs. m._g—f All || sections are H’s: primary for z >0,

_

a b
secondary for 2 <<0. The sections of YZ and ZX are the P’s

y*=—4bz, 2'=4az. The surface may be thought made by
an H moving, always || to XY, with its vertices on one of
these two P’s. In all positions the asymptotes of the H are

—

(1]
passes over into this pair of RLs., then into its conjugate,
while its vertices pass over from one P on to the other. To
two counter-values, 4z, —z, correspond two conjugate H’s.
The surface is named Hyperbolic Paraboloid; 4a and 4% are
its parameters, O is its vertex, Z is its awxis; it is saddle-like
in shape. (See Figs. at end.)

2
I to the pair f—% As the H nears the X Y-plane, it

54. It is easy to sce geometrically that the eyclic planes thus
far determined are all the real ones. For the diametral plane
of the chords of the circles must be L to them ; hence it must
be one of the three chief planes ; hence the diameter of the cen-
tral circle must be one of the axes. This can only be the mean
one, 20, in case of the ellipsoid; for any circle of radius a
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resp. ¢ lies wholly without resp. within the ellipsoid. Similar
reasoning holds for the other surfaces. But there are other

imaginary cyclic planes, as may thus be shown analytically :
¥ ] ] ] .2.
z* z

:L_" ‘t;{: z_: — 1 H i S A
Be a2+b'-’+¢3_1 an ellipsoid, and Tz—i—?j-l-ru_l a

concentric sphere ; then

R

is a cone through O, being homogeneous of second degree, and
through the intersection of sphere and ellipsoid, being satisfied
whenever their Eqs. are. When, and only when, this cone
breaks up into two planes, the intersection of ellipsoid and
sphere 18 a plane curve; i.e., is a circle. This is the case only
when the Eq. is resoluble into two linear factors; and this is
the case only when the determinant A vanishes, or when one
coefficient (one element in the diagonal of A, the others being
0) vanishes; and this is so only when *=da* or &% or ¢
For =a® or 7r=¢’ the factors, i.e., the planes, are
imaginary; for =0 theyarereal. The student can easily
apply the reasoning to the other surfaces.

55. We have seen that two RLs. lie on the hyperbolic para-
boloid : the intersection of that surface and the X Y-plane.
But the general proposition holds :

All surfaces of second degree are raled. On each lies an o
of RLs. This is clear at once on referring to the condition that
a RL. lie on a surface (Art. 17) : on combining the Eqs. of RL.
and surface, the resultant Eq. in a single Cd. must vanish iden-
tically. This Eq., being of second degree, vanishes thus when
its three coefficients each reduce to 0; and these three Eqs. of
condition can be satisfied by the four parameters of a RL. in an
o of ways.

56. Let us apply this argument to the simple hyperboloid :
x® B 2

B e R e

a® B
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Be y=tz4+v, x=3824+u
the RL. On substitution results

tv u v
(_""“ "?)"’2""2( T bﬂ)z'*'}?"'?_'l'

This vanishes identically, is satisfied for every 2z, when

8 e 1 s, tv ut |,
E_‘-?_?_G’ -E*I---—O: ‘Eg"f'gg—-l-

Hence result readily the real values

s=tav:be, (= bu:ac.
The third Eq. of condition says that every such RL. meets the
ellipse of the'gorge, as was to be foreseen. The double sign
shows that through every point of this ellipse go two RLs. ;

there lies on the surface a double system of RLs. Two RLs.,
one of each system, are

— W b
m_bcz+u, Y= -~ z 4 v,
and m-—-—ﬁz—i—u, y:b—t’:-z+1;'.
be ac

The condition that these two RLs. meet is (Art. 9)

of
u—uiv—o =224 . _E'E_Fbu'
be  be ac  ac

a condition always fulfilled, since

W v uw? ot
dtep=gte=1t

Hence every RL. of each system meets every RL. of the other.
! !
Changing the signs of % and b—“, we see that the con-
ac

dition is fulfilled only when (u—u')?)'=—a*(v—2")?; i.e.,
never. Hence no RL. of either system meets any RL. of the
same system. Hence through every point of the surface there
pass two, and only two, RLs. on it. The plane of these RLs. is
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clearly the plane tangent at their intersection. For it can meet
the surface only on these RLs., which form its conic of inter-
section ; hence all RLs. in it through the intersection of the
pair meet the surface only at that point. As the point of tan-
gence glides along either of the RLs., the tangent plane turns
about the RL., cutting the surface.

The RLs. of either system are called elements (or generators)
of the surface. Since no two elements meet, the surface is not
torse or developable, but skew or a scroll. This 1s easy to see,
thus: Be 1, 2, 3, 4, ... consecutive elements. Jf 1 and 2
meet, 2 and 3 I;lﬂﬁt, 3 and 4 meet, ete., then we may turn the
strip between 1 and 2, which is plane, infinitesimally, about 2
till it falls into the plane of the strip 2 3; then turn the sum of
the strips 12 and 23 about 3 into the plane of the strip 3 4,
and 8o on. Thus, and thus only, could the surface be turned
off, unwrapped, into a plane surface. Now, since 1 and 2,
2 and 3, ete., do not meet, this can not be done. A more
rigorous proof would not be in place here.

57. To find the RLs. on an ellipsoid, in the values of s and 1/,
put ¢ for —¢*, or ic for ¢; the values then fall out imaginary:
there are no real RLs. on the ellipsoid.

On putting «?, bi for a, b, the values of s and ¢ again fall out
imaginary : no real RLs. lie on the dowble Lyperboloid.

= 2
58. Proceeding with the hyperbolic paraboloid E;-%: 4z
a .

exactly as with the simple hyperboloid, we find for s and ¢ the
real values: s=a:u, t=+ab:u. Hence there lies on it
a double system of real RLs. Every RL. of either system ents
every RL. of the other. No RL. of either system cuts a RL.
of the same system. Through every point of the surface pass
a pair of RLs., fixing the tangent plane at the point, which
plane cuts the surface. The surface is not developable.
Eliminating 2, the student will find the XY-projection of an

element to be
-
b L]
y=% 2 (x—2u);
Na
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whence projections of all elements, on XY, are || to one of the
pair of RLs. y==%-+/b:a-x, in which XY cuts the surface;
i.e., all elements are || to one of the planes fixed by Z and this
pair. These planes contain the asymptotes of the generating
hyperbola. Hence all elements of a hyperbolic paraboloid are
| to an asymptotic plane. (See Figs. at end.)

59. The foci of the chief sections of a quadric are called foei
of the quadric. In an ellipsoid with half-axes a, b, ¢, the sec-
tion (ab) is an £ with two foci F, F' on the axis 2a, distant
Vv — b* from the centre ; the section ( hc) is an £ with two foci
@, G' on the axis 25, distant V1 — ¢ from the centre; the
section («ac) is an E with two foci H, H' on the axis 2a, distant
Va? —¢? from the centre. Thus, on the greatest axis lie four
foei, on the mean axis lie two, on the least lie none.

If a quadric with half-axes a', ', ¢ be confocal with this
base-ellipsoid, the relations hold :

a?—=b=a?—0, W —c®=b0~c, aP—-c?=a’—c;
whence
a®—a* =0"—V=c"—c =(say) A;

y 2 o, 2 z3 3y’ 22
e, —FL4—=1, d
0 a‘*’+bz+c” 8 al + A b‘-’+:~.+cﬂ+a

are confocal for all values of A.

To trace the system: for A=+ the surface is a sphere
with radius o ; as A sinks toward —c? the surface (an ellip-
soid) shrinks, and for A=—¢*> flattens to the inner doubly-
laid surface of the so-called jfocal £ in the section (ab), whose
half-axes are Va® —c?, Vb — ¢, its foci F, F’, and its vertices
H, H', G, G'; as A sinks from — ¢® towards — b°, the outer
doubly-laid surface (thought as a simple hyperboloid) spreads
out into a simple hyperboloid, which, as A nears —b?, flattens
into the so-called jucal H in the section (ac) with foci H, H'
and vertices F', F''; as A sinks from — }?%, the surface becomes a
double hyperboloid, which, as A nears — a?, flattens down to the
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section (bc); as A sinks from — a? towards —oo, the surface
becomes and remains an imaginary ellipsoid.

60. For any triplet (z', ', 2') the Eq. of the confocal yields
three values of A: A, Ay, Az; by reasoning quite like that in
Plane Geometry (Art. 148), it is shown that these roots lie
between + o and —¢’, —c® and — %%, —?&®and —a?, resp. ;
i.e., through every point of space pass three, and only three,
confocals: an ellipsoid, a simple hyperboloid, and a double
hyperboloid.

The three A’s are called elliptic C'ds. of the point (2, /', 2').
Substituting them in the Eq. of the confocal, in turn, and solv-

ing the three Eqs. as to o/, y', 2/, we get
o' =~/ + A0 Ay @F - Mg 1/ 30° — U@’ — P,

and two like expressions for %', 2' got by permuting a, b, c.

If we divide this =’ by a’+ A}, we get the coefficient of z in
the Eq. of the plane tangent at (2, %', 2') to the first confoeal ;
dividing it by a’+ A, we get the corresponding coefficient in the
Eq. of the plane tangent to the second confocal; the product
of these two coefficients is (a®+Ay) : (a? —b*) (a®—¢?). The
products of the coefficients of ¥ and of z in the two Eqs. are
got by simply permuting a, &, ¢. The sum of these three prod-
ucts is 0. This means, by Art 16, that the two planes are L.
Like holds, of course, for the second and third confoeals, and
for the third and first. Hence three confocals through a point
are mutually 1.

Cubature of the Quadric.

61. The part of a surface intercepted between two || planes is
called a zone. The space bounded By the planes and the zone
we may call a segment of the surface (meaning a segment of the
space fixed by the surface).

Suppose an equiaxial #, its conj. H', and their common
asymptotes turned about the conjugate axis. There will be
generated by H, a simple hyperboloid of. revolution; by H', a
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double hyperboloid of revolution ; by the asymptotes, a cone of
revolution : the Eqs. are

9:9+yﬂ—z’-=a,“, $9+y2—22= —a:ﬂ, ."‘.‘»g-l-yﬂ—‘g"g:{}.

Sections of the surfaces 1 to Z are circles, and their areas,
they being distant 2z from XY, are

r(Z+a?), m(F—a), =i

Hence it is clear that the circle of the cone is the arithmetic
mean between the circles of the hyperboloids; it differs from
each of these by a ring whose area is ra’, the area of the circle
of the gorge; these differ from each other by double this area,
by 2za®. It is to note that the circle of the double hyperboloid
is imaginary, and so does not really come into consideration, for
2< .

Accordingly, to find the volume of any hyperboloidal seg-
ment, it suffices to find the volume of the corresponding cone-
segment and then add resp. subtract the volume of the corre-
sponding ring-seqment in case of the single resp. double
hyperboloid. The cone-segment is itself the difference of two
cones whose altitudes are (say) z, 2, and bases =z?, =2;

henee the volume is g (2% — 2,%) ; the constant area of a section

of the ring-space is =’ and the altitude is z, —#;; hence the
volume is wa*{z — ;).

If the H be not equiaxial, but have axes 2 a, 2¢, then o any
altitude z will correspond in the cone a circle of radius not 2z but

22, the surfaces then being
C

2 _“9_22__ 9 2 e_ﬂg_zs__ 2

x4+ = =0, 4y TR a’,
{!.2

:1:’*'-}-3/2-—-——02-22:[]_

Hence it is enongh to change z into az:e. From these last
surfaces the most general, viz.,
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2 ¥y . .7 2y _ 2 _ 4
at b {r"_l’ u+bz 7
xr | 9 22
ol 0 SRR T | |
a2+ﬁ &

are got by shortening every y in the ratio b:@; hence it suf-
fices to multiply the preceding results by this ratio.

62. The ellipsoid (a, b, ¢) is got from the sphere (a, a, a) by
shortening every y in the ratio b:a, and every z in the ratio
c:a; hence the whole volume of the ellipsoid is got from that,
of the sphere by shrinking it in the ratio bc:a®; and the same
ratio holds between volumes of corresponding parts of ellipsoxd
and sphere. The volume of the sphere is {wa?; hence that of
ellipsoid is rabe.

On three axes, 2 a, 2b, 2 ¢, construct an ellipsoid and the two
hyperboloids; also construct a eylinder tangent to the simple
hyperboloid along the ellipse of the gorge, its bases tangent to
the double hyperboloid at the latter’s vertices. Let us compare
the volumes F, (!, K, H of the ellipsoid, cylinder, cone-seg-
ment, hyperboloid-segment, the bases of the two latter being
the bases of the evlinder. The volume E is trabe; Cis 2¢-7ab
or 2zabe; K is § of C, oris }mabe; His X plus 2¢-mwab, or H
is §rabe ; hence

K:E:C:H=1:2:3:4.

63. To find the volume V of a seqgment of the elliptic parabo-
Y
loid =

@
section of the plane z=2z for the other; cut this eap-shaped
segment into n thin slices by planes || to the base ; let the alti-

o
o 3 lé_ =42z, first take the vertex for one base and the

- z - .
tude of each slice be = ; it will have two bases, each an £, a
I

greater and a less; the volume of each slice will be less than the
altitude by the greater base and greater than the altitude by the
less base ; hence the whole volume will be less than the common

altitude E by the sum of the greater bases and greater than that
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altitude by the sum of the smaller bases; or, common factors
set out,

2 g
V{%-d#\/ubgl +2 434 e + 1},

3

n?

- V{47rwfa-ﬂ-z-z{l+l},
2 n

V}4w\/ab+z-z{ 1 } *
2 i

Ve>Z idaVabio 41424 . 4n—1},

1
As n nears o, —~ nears 0, and there results
n

F= 2"" W ﬂbizlzi

Now 4 7#Vab-z is the base of the segment, z its altitude;
hence 4 =V ab-z-z is the volume of the circumscribing eylinder ;
hence the volume of a cap-segment of an elliptic paraboloid is
half that of the cireumscribed eylinder.

The volume of any segment is the difference of two cap-
segments.

64. To find the volume v of a segment of an Ayperbolic parab-
oloid ﬁ; — %— =42z, suppose it bounded by the surface, tha
0

X Y-plane, the YZ-plane, and a plane xz=2, | to YZ. The
section of this last plane with the surface is a parabola; the
chord (in X Y-plane) of the segment of this P is 2aVb:a, the
altitude of the segment is x*:4a ; hence the area is

vab.x?
3.a’
Cut the solid segment into n thin slices ; then, reasoning exactly
as before, we get

_Nab.axt
P 3.atnt

§194 254 834 ... 407,
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SR ALIL AT I LI R ey )
Sa‘-n

n(n 1)

Now P4+ 24 e nP= y

as we know from Algebra; hence

V*-":_ 'ijl'b -:‘1'4(1 + 1)2,

12 a* "

V> "‘/“T""f(l— 1)2.

12a® n

As n nears o , 1 nears 0, and there results
n

V=+Vub-2#:12a

Now Vab-2*:3 «* is the base of the segment, z its altitude ;
hence Vab-z':3a® is the volume of the circumscribed cylinder ;
hence the volume of such a segment of arn hyperbolic paraboloid
is one-fourth that of the circumscribed cylinder.

The student may confirm the results as to the ellipsoid and
the hyperboloids by this method of slices.

The segments thus far treated have been right, i.e., L to an
axis of the surface; but like reasoning applies to oblique seg-
ments, on observing that the intercept between the bases on the
conjugate diameter is not the altitude of the segment but a

multiple of it.
Varieties of Quadrics.

65. If a quadric be given by its Eq. in the general form, itis
of course possible to determine what kind of a quadric it is by
reducing its Eq. to the simplest form ; but this is tedious. It
is possible to establish certain simple tests, however, by some
such reasoning as this:

By Art. 30 the surface is centric or non-centric, according

as D20 or D=0. If DZ0, the centric Eq. is
; . A
kf+2h¢y+jyﬂ+ﬂgzm+2fyz+uz+ﬁ=0.
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If now a RL. through the centre, y=t2, ®=wuz, meet
the surface in finity for all values of ¢ and wu, the surface is
closed or ellipsoidal; otherwise, it is hyperboloidal. 'The stu-
dent can show that the first holds when both D>0 and C or
kj—h®> 0; the surface is then a real ellipsoid, an imaginary
cone with one real point (the centre), or an imaginary ellipsoid,
according as A<0, A=0, or A>0 (& being taken +
always).

If D and C be not both >0, the surface is hyperboloidal.
We now test whether the RLs. on it be real or imaginary by the
former method ; the result is, the surface is a simple Ayperbo-
loid, an elliptic cone, or a double /iyperboloid, according as

In case D=0, the surface is non-centric or paraboloidal.
Putting z=0, we find the section of the X Y-plane is an £ or
an H, i.e., the surface is an elliptic or an hyperbolic paraboloid,
according as C>0 or C<0. If C=0, the section is a P,
and this test fails. In that case, tost with ik — ¢° in the same
way. If both kj — 1* and ik — g* vanish, then must also ji — f?
vanish ; all sections are P’s, and the surface is a parabolic
cylinder.

Lastly, in case one or more of the numerators L, M, N of the
Cds. of the centre (L: D, M: D, N: D), as well as the common
denominator I), vanish, the centre becomes indeterminate, the
surface has an « of centres. The surface is then a ecylinder.
In case the three Eqs. of planes @,=0, @,=0, @,=0
which determine the certre reduces to two only, their line of in-
tersection is the line of centres, every point on it is a centre of
the surface. The cylinder is elliptic, hyperbolic, or breaks up
into a pair of planes, according as one of its plane sections is an
E, an H, or a pair of intersecting RLs. In case the three Eqs.
reduce to one, each represents the plane of centres, every point
on it is a centre of the surface. The surface itself consists of
two || planes, midway between which lies the || plane of centres.
In case the Eq. of the surface is a perfect square, the surface
consists of two planes fallen together in the plane of centres.
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HyrErRBOLIC PARABOLOID.

OC and OD are Parabolas.
04 and OB are Asymptotic directions
for the Hyperbolas,

RLs. ox TrE H. P.
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Peirce’'s Three and Four Place Tables of Loga-

rithmic and Trigonometric Functions. By JAMeEs MiLLs PEIRCE,
University Professor of Mathematics in Harvard University. Quarto,
Cloth. Mailing Price, 45 cts.; Introduction, 40 cts.

Four-place tables require, in the long run, only half as much time
s five-place tables, one-third as much time as six-place tables, and
one-fourth as much as those of seven places. They are sufficient
for the ordinary calculations of Surveying, Civil, Mechanical, and
Mining Engineering, and Navigation; for the work of the Physical
or Chemical Laboratory, and even for many computations of Astron-
omy. They are also especially suited to be used in teaching, as they
illustrate principles as well as the larger tables, and with far less
expenditure of time. The present compilation has been prepared
with care, and is handsomely and clearly printed.

Elements of the Differential Calculus.

With Numerous Examples and Applications. Designed for Use as a
College Text-Book. By W. E. BveErLy, Professor of Mathematics,
Harvard University. 8vo. 273 pages. Mailing Price, $2.15; Intro-
duction, $2.00.

This book embodies the results of the author’s experience in
teaching the Calculus at Cornell and Harvard Universities, and is
intended for a text-book, and not for an exhaustive treatise. Its
peculiarities are the rigorous use of the Doctrine of Limits, as a
foundation of the subject, and as preliminary to the adoption of the
more direct and practically convenient infinitesimal notation and
nomenclature ; the early introduction of a few simple formulas and
methods for integrating ; a rather elaborate treatment of the use of
infinitesimals in pure geometry: and the attempt to excite and keep
up the interest of the student by bringing in throughout the whoie
book, and not merely at the end, numerous applications to practical
problems in geometry and mechanics.

James Mills Peirce, Frof. of |is general without being superficial;
Math., Harvard Univ. (From the Har-| limited to leading topics, and yet with-
vard Register) : In mathematics, as in | in its limits; thorough, accurate, and

other branches of study, the need isi practical ; adapted to the communica-
now very much felt of teaching which ! tion of some degree of power, as well



as knowledge, but free from details
which are important only to the spe-
cialist. Professor Byerly's Calculus
appears to be designed to meet this
want. . .. Such a plan leaves much
room for the exercise of individual
judgment; and differences of opinion
will undoubtedly exist in regard to one
and another point of this book. But
all teachers will agree that in selection,
arrangement, and treatment, it is, on
the whole, in a very high degree, wise,
able, marked by a true scientific spirit,
and calculated to develop the same
spirit in the learner. . The book
contains, perhaps, all of the integral
calculus, as well as of the differential,
that is necessary to the ordinary stu-
dent. And with so much of this great
scientific method, every thorough stu-
dent of physics, and every general
scholar who feels any interest in the
relations of abstract thought, and is
capable of grasping a mathematical
idea, ought to be familiar. One who
aspires to technical learning must sup-
plement his mastery of the elements
by the study of the comprehensive
theoretical treatises. ... But he who is
thoroughly acquainted with the book
before us has made a long stride into
a sound and practical knowledge of
the subject of the calculus. He has
begun to be a real analyst.

H. A. Newton, FProf. of Math. in
Yale Coil., New Hawven : | have looked
it through with care, and find the sub-
ject very clearly and logically devel-
oped. I am strongly inclined to use it
in my class next year.

8. Hart, recent FProf. of Matk. in
Trinity Coll., Conn.: The student can
hardly fail, I think, to get from the book
an exact,and, at the same time, a satis-
factory expianation of the principles on
which the Calculus is based; and the
mtroduction of the simpler methods of

integration, as they are needed, enables
applications of those prinaiples to be
introduced in such a way as to be both
interesting and instructive.

Charles Eraus, Techniker, Pard-
ubitz, Bokemia, Austria; Indem ich
den Empfang Ihres Buches dankend
bestaetige muss ich Ihnen, hoch geehr-
ter Herr gestehen, dass mich dasselbe
sehr erfreut hat, da es sich durch
grosse Reichhaltigkeit, besonders klare
Schreibweise und vorzuegliche Behand-
lung des Stoffes auszeichnet, und er-
weist sich dieses Werk als eine bedeut-
ende Bereicherung der mathematischen
Wissenschalft,

De Volson Wood, Fref. of
Math., Stevens' Inst., Hoboken, N.¥.:
To say, as I do, that it is a first-class
work, is probably repeating what many
have already said for it. I admire the
rigid logical character of the work,
and am gratified to see that so able a
writer has shown explicitly the relation
between Derivatives, Infinitesimals, and
Differentials, The method of Limits
is the true one on which to found the
science of the calculus. The work is
not only comprehensive, but no vague-
ness is allowed in regard to definitions
or fundamental principles.

Del EKemper, FProf. of Math,
Hampden Sidney Coli., Va.: My high
estimate of it has been amply vindi-
cated by its use in the class-room.

R. H. Graves, Prof. of Matk.,
Univ, of North Carelina: 1 have al-
ready decided to use it with my next
class; it suits my purpose better than
any other book on the same subject
with which 1 am acquainted.

Edw. Brooks, Author of a Series
of Matk. : Its statements are clear and
scholarly, and its methods thoroughly
analytic and in the spirit of the latest
mathematical thought.



Syllabus of a Course in Plane Trigonometry.
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Syllabus of a Course in Plane Analytical Geom-
By W. E. BYERLY. Mailing Price, 10 cts.

Svo.

elry. 8vo. 12 pages.

Syllabus of a Course in Plane Analytic Geom-

(Adzvanced Course.) By W. E. BYERLY, Professor of Mathe-
12 pages. Mailing Price, 10 cts.

etry
matics, Harvard University. &vo.

Syllabus of a Course in Analytical Geometry of
By W. E. BYERLY. 8vo. 10 pages. Mailing

Three Dimensions,
Price, 10 cts.

Syllabus of a Course on Modern Methods in

Aunalytic Geometry. By W. E. BYERLY. 8 pages. Mailing
- Price, 10 cts.

Syllabus of a Course in the Theory of Equations.

By W. E. BykrLy.

Elements of the Integral Calculus.

By W. L. Byverry, Professor of Mathematics in Harvard University.
&vo. 204 pages. Mailing Price, $2.15; Introduction, $2.00.

8vo.

8vo. 8 pages. Mailing Price, 10 cts.

This volume is a sequel to the author’s treatise on the Differential
Calculus (see page 134), and, like that, is written as a text-book.
The last chapter, however, — a Key to the Solution of Differential
Equations, — may prove of service to working mathematicians.

H. A. Newton, Prof. of Math.,
Yale Coil,: We shall use it in my
optional class next term,

those of the Differential Calculus by
the same author.

Zion's Herald : A text-bookevery
way worthy of the venerable University
It is | in which the author is an honored
teacher. Cambridge in Massachusetts,

Mathematical WVisitor: The
subject is presented very clearly,

the first American treatise on the Cal-

culus that we have seen which devotes
any space to average and probability.

Schoolmaster, Lomndor.: The
merits of this work are as marked as

like Cambridge in England, preserves
its reputation for the breadth and strict-
ness of its mathematical requisitions,
and these form the spinal column of a
liberal education.



A Short Table of Integrals.

To accompany BYERLY'S INTEGRAL CALCULUS. By B. O.
PEIRCE, JR., Instructor in Mathematics, Harvard University. 16 pages.
Mailing Price, 10cts. To be bound with future editions of the Calculus.

Elements of Quaternions.

By A.S. Harpy, Ph.D., Professor of Mathematics, Dartmouth College,
Crown, 8vo. Cloth. 240 pages. Mailing Price, $2.15; Introduction,
$2.00.

The chief aim has been to meet the wants of beginners in the
class-room. The Elements and Lectures of Sir W. R. Hamilton
are mines of wealth, and may be said to contain the suggestion
of all that will be done in the way of Quaternion research and
application : for this reason, as also on account of their diffuseness
of style, they are not suitable for the purposes of elementary instruc-
tion. The same may be said of Tait's Quaternions, a work of
great originality and comprehensiveness, in style very elegant but
very concise, and so beyond the time and needs of the beginner.
The /utroduction to Quaternions by Kelland contains many exer-
cises and examples, of which free use has been made, admirably
illustrating the Quaternion spirit and method, but has been found,
in the class-room, practically deficient in the explanation of the
theorv and conceptions which underlie these applications. The
object in view has thus been to cover the infroductory ground more
thoroughly, especially in symbolic transformations, and at the same
time to obtain an arrangement better adapted to the methods of
instruction common in this country.

PRESS NOTICES.

Westminster Review: It is a The Nation : For those who have
remarkably clear exposition of the sub- | never studied the subject, this treatise
ject. seems to us superior both 1o the work
of Prof. Tait and to the joint treatise by

The Daily Review, Edinburghk, | Profs, Tait and Kelland.

Scotland : This is an admirable text-
book. Prof. Hardy has ably supplied New York Tribune: The Qua-
a felt want, The definitions are models | ternion Calculus is an instrument of
of conciseness and perspicuity. - mathematical research at once so pow-




erful, flexible, and elegant, so sweeping
in its range, and so minutely accurate,
that its discovery and cevelopment has
been rightly estimated as one of the
crowning achievements of the century.
The time is approaching when all col-
leges will insist upon its study as an
essential part of the equipment of young
men who aspire to be classified among
the liberally educated. This book fur-
nishes just the elementary instruction
on the subject which is needed.

New York Times: Itisespecially
designed to meet the needs of begin-
ners in the science, ... It hasa way
of putting things which is eminently its
own, and which, for clearness and force,
is as vet unsurpassed.... If we may
not seek for Quaternions made easy, we
certainly need search no longer for
Quaternions made pldin.

Van Nostrand Engineering
Magazine: To any one who has
labored with the very few works ex-
tant upon this branch of mathematics,
a glance at the opening chapter of
Prof. Hardy's work will enforce the
conviction that the author is an in-
structor of the first order. The book
is quite opportune. The subject must

soon become a necessary one in all
the higher institutions, for already are
writers of mathematical essays making
free use of Quaternions without any
preliminary apology.

Canada School Journal, Tv-
ronto : The author of this treatise has
shown a thorough mastery of the Qua-
ternion Calculus.

London Schoolmaster: It is in
every way suited to a student who
wishes to commence the subject aé
initio, One will require but a few
hours with this book to learn that this
Calculus, with its concise notation, is a
most powerful instrument for mathe-
matical operations.

Boston Transcript: A text-book
of unquestioned excellence, and one
peculiarly fitted for use in American
schoaols and colleges.

The Western, S. ZLouis: This
work exhibits the scope and power of
the new analysis in a very clear and
concise form ... illustrates very finely
the important fact that a few simple
principles underlie the whole body of
mathematical truth.

FROM COLLEGE FPROFESSORS.

James Mills Peirce, FProf of
Matk., Harvard Cell.: 1 am much
pleased with it. It seems to me to
supply in a very satisfactory manner
the need which has long existed of a
clear, concise, well-arranged, and logi-
cally-developed introduction to this
branch of Mathematics. [ think Prof.
Hardy has shown excellent judgment
in his methods of treatment, and also
in limiting himself to the exposition
and illustration of the fundamental
principles of his subject. It is, as it

ought to be, simply a preparation for
the studv of the writings of Hamilton
and Tait. [ hope the publication of
this attractive treatise will increase the
attention paid in our colleges to the
profound, powerful, and fascinating cal-
culus of which it treats,

Charles A. Young, PFProf. of
Astronomy, Princefon Coll,: 1 find it
by far the most clear and intelligible
statement of the matter I have yet
SEEI.



Elements of the Differential and Integral Calculus.

With Examples and Applications. By J. M. TAvLOR, Professor of
Mathematics in Madison University. 8vo. Cloth. 249 pp. Mailing
price, $1.95; Introduction price, $1.80.

The aim of this treatise is to present simply and concisely the
fundamental problems of the Calculus, their solution, and more
common applications. Its axiomatic datum is that the change of a
variable, when not uniform, may be conceived as becoming uniform
at any value of the variable.

It employs the conception of rates, which affords finite differen-
tials, and also the simplest and most natural view of the problem of
the Differential Calculus. This problem of finding the relative
rates of change of related variables is afterwards reduced to that of
finding the limit of the ratio of their simultaneous increments ; and,
in a final chapter, the latter problem is solved by the principles of
infinitesimals.

Many theorems are proved both by the method of rates and that
of limits, and thus each is made to throw light upon the other.
The chapter on differentiation is followed by one on direct integra-
tion and its more important applications. Throughout the work
there are numerous practical problems in Geometry and Mechanics,
which serve to exhibit the power and use of the science, and to
excite and keep alive the interest of the student.

Judging from the author’s experience in teaching the subject, it
is believed that this elementary treatise so sets forth and illustrates
the highly practical nature of the Calculus, as to awaken a lively
interest in many readers to whom a more abstract method of treat-
ment would be distasteful.

Oren Root, Jr., Prof. of Math., C. M. Charrappin, 8.J., S.
famiiton Coll,, N.Y,: In reading the | Louis Univ.: 1 have given the book a
manuscript I was impressed by the | thorough examination, and I am satis-
clearness of definition and demonstra- | fied that it is the best work on the sub-
tion, the pertinence of illustration, and | ject 1 have seen. I mean the best
the happy union of exclusion and con- | work for what it was intended,—a text-
densation. It seems to me most admir- | book. I would like verv much to in-
ably suited for use in college classes, | troduce it in the University.

I prove my regard by adopting this as | ( Fan. 12, 1885.)
our text-book on the calculus. f




